
Engineering Applications of Artificial Intelligence 74 (2018) 242–251

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

An efficient approach for mining sequential patterns using multiple threads
on very large databases
Bao Huynh a,b, Cuong Trinh c,d, Huy Huynh c,d, Thien-Trang Van e, Bay Vo e,f,*, Vaclav Snasel d

a Center for Applied Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
b Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
c Department of Computing and Computer Services, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
d Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
e Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam
f College of Electronics and Information Engineering, Sejong University, Seoul, Republic of Korea

A R T I C L E I N F O

Keywords:
Sequential patterns
Multi-core processors
Multi-threading
Early pruning

A B S T R A C T

Sequential pattern mining (SPM) plays an important role in data mining, with broad applications such as in
financial markets, education, medicine, and prediction. Although there are many efficient algorithms for SPM,
the mining time is still high, especially for mining sequential patterns from huge databases, which require the
use of a parallel technique. In this paper, we propose a parallel approach named MCM-SPADE (Multiple threads
CM-SPADE), for use on a multi-core processor system as a multi-threading technique for SPM with very large
database, to enhance the performance of the previous methods SPADE and CM-SPADE. The proposed algorithm
uses the vertical data format and a data structure named CMAP (Co-occurrence MAP) for storing co-occurrence
information. Based on the data structure CMAP, the proposed algorithm performs early pruning of the candidates
to reduce the search space and it partitions the related tasks to each processor core by using the divide-and-
conquer property. The proposed algorithm also uses dynamic scheduling to avoid task idling and achieve load
balancing between processor cores. The experimental results show that MCM-SPADE attains good parallelization
efficiency on various input databases.

1. Introduction

Sequential pattern mining (SPM) plays an important role in data
mining, which was first introduced by Agrawal and Srikant (1995).
Sequential pattern mining has multiple applications, such as market bas-
ket analysis (Olson and Delen, 2008; Mostafa, 2015; Olson, 2016), web
log analysis (Grace et al., 2011; Wang, 2012; Vemulapalli and Shashi,
2013), DNA sequence analysis (Posada, 2009; Pareek et al., 2011;
Wilson et al., 2016) and prediction (Hussein et al., 2015; Chakraborty
et al., 2016; Norouzi et al., 2016). The aim of this approach is to find all
frequent sequential patterns with supports that satisfy the user-defined
minimum support threshold. The main challenge of this is to generate
candidate patterns in huge datasets with the minimum computational
cost.

There are many efficient algorithms for mining SPM and these can be
categorized as those using a horizontal database format, including GSP
(Agrawal and Srikant, 1996; Zhang et al. 2002), AprioriAll (Agrawal and

* Corresponding author at: Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
E-mail addresses: huynhquocbao@tdt.edu.vn (B. Huynh), trinhphicuong@tdt.edu.vn (C. Trinh), huynhminhhuy@tdt.edu.vn (H. Huynh),

vtt.trang@hutech.edu.vn (T.-T. Van), vd.bay@hutech.edu.vn (B. Vo), vaclav.snasel@vsb.cz (V. Snasel).

Srikant, 1995) and PrefixSpan (Pei et al., 2004) or a vertical database
format, including SPADE (Zaki, 2001a), PRISM (Gouda et al., 2010) and
CM-SPADE (Fournier-Viger et al., 2014).

However, the mining times of these algorithms are still high because
they must explore a huge search space, which is computationally
very expensive. In addition, a long sequence includes a combinatorial
number of subsequences and sequential pattern mining creates an
explosive number of frequent subsequences for long patterns, which is
prohibitively costly in both time and memory requirements, especially
for very large or dense databases.

Parallel processing has been widely applied to improve processing
speed for various problems. While multi-core architectures have been
used to speed up processing time, but they have been rarely applied
to SPM. Methods based on multi-core architectures include PGP-mc,
which uses parallel gradual pattern extraction (Laurent et al., 2012),
GapMis-OMP, which is a tool for pairwise short-read alignment (Flouri
et al., 2012), SW (Smith–Waterman), which compares sequence lengths

https://doi.org/10.1016/j.engappai.2018.06.009
Received 16 June 2017; Received in revised form 17 May 2018; Accepted 25 June 2018
0952-1976/© 2018 Published by Elsevier Ltd.

https://doi.org/10.1016/j.engappai.2018.06.009
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2018.06.009&domain=pdf
mailto:huynhquocbao@tdt.edu.vn
mailto:trinhphicuong@tdt.edu.vn
mailto:huynhminhhuy@tdt.edu.vn
mailto:vtt.trang@hutech.edu.vn
mailto:vd.bay@hutech.edu.vn
mailto:vaclav.snasel@vsb.cz
https://doi.org/10.1016/j.engappai.2018.06.009


B. Huynh et al. Engineering Applications of Artificial Intelligence 74 (2018) 242–251

(Sánchez et al., 2010), PIB-PRISM (Huynh and Vo, 2015), pDBV-SPM
(Huynh et al., 2017) and piISP-IC (Le et al., 2018), which use multi-core
processors for SPM.

Multi-core systems have placed increasing pressure on system pro-
grammers as well as application developers to make efficient use of the
multiple computing cores. The related challenges include determining
how to divide applications into separate tasks and minimizing CPU idle
time. These must be balanced such that each task carries out an equal
amount of work. Just as tasks must be separated, data must also be
divided so that it can be accessed by the tasks running on separate cores.

The present study proposes a parallel approach called MCM-SPADE
(Multiple threads CM-SPADE) based on a multi-core processor architec-
ture and data structure named CMAP (Fournier-Viger et al., 2014). The
proposed algorithm overcomes the drawbacks of CM-SPADE (Fournier-
Viger et al., 2014) and further reduces the computational cost of mining.
The main contributions of MCM-SPADE are reducing the execution time
and memory usage when working with very large databases and this is
done as follows:

1. Early pruning of unpromising candidates based on the CMAP
data structure, a very compact data structure with a single
database scan.

2. Using dynamic scheduling to avoid task idling and achieve load
balancing of the workload between processor cores.

3. Fast mining is achieved based on a multi-core architecture system
with the multi-threading technique.

4. The experiments carried out in this work show the greater
efficiency of MCM-SPADE compared to SPADE, M-SPADE, and
CM-SPADE.

The rest of this paper is organized as follows. Section 2 presents
the basic concepts, while Section 3 reviews related works. Section 4
summaries the multi-core processor architecture and the MCM-SPADE
algorithm is proposed in Section 5. The experimental results are dis-
cussed in Section 6. Finally, conclusions and ideas for future work are
given in Section 7.

2. Preliminaries

Definition 1 (Item). Let 𝐼 = {𝑖1, 𝑖2,… , 𝑖𝑚} be a set of 𝑚 distinct items.
For example, assume 𝐼 = {bread, milk, cheese, butter, cereal}, then the
items are bread, milk, cheese, butter, cereal.

Definition 2 (Itemset). An itemset 𝑋 = (𝑥1, 𝑥2,… , 𝑥k), where 𝑥j ∈ 𝐼
(1 ≤ 𝑗 ≤ 𝑘), is a non-empty unordered collection of items denoted as
a 𝑘-itemset. Each itemset is given in brackets, for itemsets that contain
only a single item, the brackets are omitted. Without loss of generality,
it is assumed that the items in an itemset are sorted in increasing order.
For example, the itemset (ABC) represents the sets of items 𝐴, B, 𝐶 and
itemset (𝐵) can be written as 𝐵.

Definition 3 (Sequence). A sequence 𝛼 = ⟨𝑎1𝑎2 ⋯ 𝑎𝑢⟩ is a non-empty
ordered list of itemsets, where itemset 𝑎1 occurs before 𝑎2, which occurs
before 𝑎3 and so on. A sequence element 𝑎𝑖 is an itemset and 𝑢 (the size
of a sequence) is the number of itemsets (or elements) in the sequence.

An item can occur at most once in an itemset of a sequence but can
occur multiple times in different itemsets of a sequence. For example,
sequence 𝛼 = ⟨𝐶𝐴𝐴(𝐴𝐶)⟩ contains four itemsets. It indicates that item
𝐶 was followed by 𝐴, then 𝐴 and lastly are items 𝐴 and 𝐶 occurred at
the same time.

Definition 4 (Length of Sequence). Given a sequence 𝛼 = ⟨𝑎1𝑎2 ⋯ 𝑎𝑢⟩,
the length of a sequence is the total number of items in the sequence,
denoted as 𝑘 =

∑

𝑗 |𝑎𝑗 |. A sequence with length 𝑘 is called a 𝑘-sequence.
For example, the sequence ⟨𝐵(𝐴𝐶)⟩ is a 3-sequence of size 2.

Table 1
Example of a sequence database.

SID Sequence

𝑆1 ⟨(𝐴𝐵)𝐶(𝐹𝐺)𝐺𝐸⟩

𝑆2 ⟨(𝐴𝐷)𝐶𝐵(𝐴𝐵𝐸𝐹 )⟩
𝑆3 ⟨𝐴𝐵𝐹𝐺⟩

𝑆4 ⟨𝐵(𝐹𝐺)⟩

Definition 5 (Sequence Database). A sequence database is a set of
sequences, denoted 𝐷 = {𝑆1, 𝑆2,… , 𝑆n}, where 𝑛 is the number of
sequences in 𝐷 and each sequence 𝑆i (1 ≤ 𝑖 ≤ 𝑛) has the form ⟨𝑠𝑖𝑑,𝑋⟩,
where each sid is a unique sequence identifier and 𝑋 = ⟨𝐼1𝐼2 ⋯ 𝐼𝑣⟩,
such that 𝐼j ⊆ 𝐼 (1 ≤ 𝑗 ≤ 𝑣) is an ordered list of itemsets. A pattern is a
subsequence of ordered itemsets. Each itemset in a pattern is called an
element. For example, Table 1 contains four sequences having the SIDs
𝑆1, 𝑆2, 𝑆3 and 𝑆4. The first sequence 𝑆1 = ⟨(𝐴𝐵)𝐶(𝐹𝐺)𝐺𝐸⟩ contains five
itemsets. This indicates that items 𝐴 and 𝐵 occurred at the same time
and were followed by 𝐶, then 𝐹 , 𝐺 and lastly 𝐸.

Definition 6 (Subsequence and Super Sequence). A sequence 𝛽 =
(𝑏1𝑏2 ⋯ 𝑏𝑚) is called a subsequence of sequence 𝛼 = (𝑎1𝑎2 ⋯ 𝑎𝑛) and
𝛼 is a super sequence of 𝛽, denoted as 𝛽 ⊆ 𝛼, if there exist integers
1 ≤ 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑛 ≤ 𝑚 such that 𝑏𝑘 ⊆ 𝑎𝑗𝑘, 1 ≤ 𝑘 ≤ 𝑛. For example,
the sequence ⟨𝐵(𝐴𝐶)⟩ is a subsequence of ⟨(𝐴𝐵)𝐸(𝐴𝐶𝐷)⟩ but ⟨(𝐴𝐵)𝐸⟩

is not a subsequence of ⟨𝐴𝐵𝐸⟩.

Definition 7 (Support). The absolute support of a sequence 𝑝 in a
database 𝐷 is defined as the total number of sequences in 𝐷 that contain
𝑝, denoted as 𝑠𝑢𝑝(𝑝) = |{𝑆𝑖 ∈ 𝐷|𝑝 ⊆ 𝑆i}|. The relative support of 𝑝 is
given as the fraction of sequences that contain 𝑝 in a dataset. Absolute
and relative supports are sometimes used interchangeably.

Definition 8 (Sequential Pattern Mining). Given a sequence database 𝐷
and a user-specified threshold, called the minimum support (denoted
minsup), a sequence 𝑝 is said to be a frequent sequential pattern if it
occurs more than minsup times. That is, sup (𝑝) ≥ minsup. The problem
of SPM is to find all sequential patterns in the database 𝐷.

Definition 9 (Maximal Sequential Pattern). A sequential pattern is
maximal if it is not a subsequence of any other sequential patterns.

Definition 10 (Closed Sequential Pattern). A sequential pattern is closed
if it is not a subsequence of any other sequential patterns with the same
support.

Definition 11 (Prefix). A sequence 𝛼 = ⟨𝑎1, 𝑎2,… , 𝑎m⟩ is called a prefix
of a sequence 𝛽 = ⟨𝑏1, 𝑏2,… , 𝑏n⟩ if and only if m < n and 𝑎i = 𝑏i∀i ∈ [1,
m].

Definition 12 (Extending the Length of a Sequence). A sequence 𝛼 =
⟨𝑎1, 𝑎2,… , 𝑎m⟩ and an event 𝑒k . Sequence 𝛽 is called the extending length
of the sequence 𝛼 with the event 𝑒𝑘 if and only if 𝛽 = ⟨𝑎1, 𝑎2,… , 𝑎m, 𝑎m+1⟩

and 𝑎𝑚+1 = 𝑒𝑘.

Definition 13 (Horizontal Database Format). A sequence database in
the horizontal format is a database where each row is a transaction in
the form sid-itemset, where sid is a sequence ID, and itemset is a set of
items that appear in that sequence, Table 1 shows a horizontal sequence
database.

Definition 14 (Vertical Database Format). A sequence database in
vertical format is a database where each row has a transaction in the
form ⟨𝑖𝑡𝑒𝑚, 𝑠𝑖𝑑⟩, where sid is a set of sequence IDs containing item.
Table 2 shows the vertical representation of the database of Table 1.

Definition 15 (𝑠-extension). The s-extension of a sequential pattern
⟨𝐼1, 𝐼2,… , 𝐼n⟩ by item 𝑋 is defined as ⟨𝐼1, 𝐼2,… , 𝐼n, 𝑋⟩.

243



Download English Version:

https://daneshyari.com/en/article/6854137

Download Persian Version:

https://daneshyari.com/article/6854137

Daneshyari.com

https://daneshyari.com/en/article/6854137
https://daneshyari.com/article/6854137
https://daneshyari.com

