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A B S T R A C T

Neural approximations of the optimal stationary closed-loop control strategies for discounted infinite-horizon
stochastic optimal control problems are investigated. It is shown that for a family of such problems, the minimal
number of network parameters needed to achieve a desired accuracy of the approximate solution does not
grow exponentially with the number of state variables. In such a way, neural-network approximation mitigates
the so-called ‘‘curse of dimensionality’’. The obtained theoretical results point out the potentialities of neural-
network based approximation in the framework of sequential decision problems with continuous state, control,
and disturbance spaces.

1. Introduction

This paper focuses on discounted infinite-horizon stochastic opti-
mization problems, in which decisions (or controls) have to be chosen
at each time stage, in such a way to maximize the expected value, with
respect to the uncertainties, of a reward (or, equivalently, minimize
an expected cost), expressed as a summation over an infinite number
of stages. The decisions taken at each stage depend on state variables,
which capture the ‘‘history’’ of the optimization process. Among the
kinds of uncertainties that arise in problems from applied sciences and
engineering, we mention outcomes of market analysis in production
planning, rain inflows in water reservoirs systems, stock prices in
financial applications, traveling times in traffic management, lengths
of message queues in telecommunication networks, etc. We include in
the model a discount factor, in such a way that the decision maker
can weight the current reward (or cost) more than future ones. The
presence of the discount factor also guarantees, under mild conditions,
the existence of stationary (i.e., stage-independent) optimal closed-loop
control functions (Bertsekas, 2012), which are more attractive from a
computational point of view than stage-dependent ones. Typically, dis-
counted infinite-horizon stochastic optimal control problems cannot be
solved in closed form. Hence, one has to search for suboptimal solutions.

The approach that we follow in this work to derive suboptimal
solutions is based on constraining the control functions to be made up
of relatively few computational units with a simple structure, since such
a choice has already proved effective in high-dimensional optimization
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tasks (see, e.g., Giulini and Sanguineti, 2009; Gnecco and Sanguineti,
2011; Juditsky et al., 1995; Kůrková and Sanguineti, 2008a, b and
Smith, 1999 and the references therein, and, more specifically, Bert-
sekas, 1996, 2012; Gnecco and Sanguineti, 2012; Gnecco et al., 2012;
Lewis and Liu, 2013; Lewis and Vrabie, 2009; Liu et al., 2013, 2015;
Narendra and Mukhopadhyay, 1997; Powell, 2007; Sutton and Barto,
1998; Zhang et al., 2013; Zoppoli et al., 2002 for the case of neural-
network-based approximation schemes applied to suboptimal control).
More precisely, the closed-loop control functions that we consider take
on the form of linear combinations of input–output maps computed by
units belonging to some dictionary (Gnecco et al., 2011a, b; Gribonval
and Vandergheynst, 2006). Well-known dictionaries are those made by
ridge, radial, or kernel units, Hermite functions, trigonometric polyno-
mials, and splines. When the elements of the dictionaries are nonlinearly
parametrized, one has nonlinear approximation schemes; a well-known
example is represented by sigmoidal neural networks (Kůrková and
Sanguineti, 2002), where the parameters are the neural weights and
the biases.

Our target consists in estimating, for a class of discounted infinite-
horizon stochastic optimal control problems, the accuracy of suboptimal
stationary closed-loop control functions obtained via neural networks.
This choice of the approximation scheme is motivated by the extensive
use, reported in the literature, of neural networks for the approximate
solution of optimal control problems via Adaptive Dynamic Program-
ming (ADP) algorithms (see Bertsekas, 1996, 2012; Gaggero et al., 2013,
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2014; Gnecco and Sanguineti, 2008b, 2010; Lewis and Liu, 2013; Lewis
and Vrabie, 2009; Liu et al., 2013, 2015; Powell, 2007; Sutton and
Barto, 1998; Zhang et al., 2013 and the recent survey papers Kiumarsi
et al., 2018; Wang et al., 2017). With respect to existing results, in this
work we provide additional insights into the motivations for the use
in ADP of neural-network-based approximation schemes with sigmoidal
computational units, possibly guiding also the choice of the number of
such units. Our main contributions are as follows:

(a) as a first step of our analysis, we replace the optimal stationary
closed-loop control function by a suitable approximation, and we
derive an upper bound on the corresponding loss in performance
(Theorem 3.1);

(b) vice-versa, we investigate a case for which an upper bound on
such a loss can be translated into an upper bound on the error in
the approximation of the optimal stationary closed-loop control
function (Theorem 3.3 and the related Theorem 3.2);

(c) we construct an example for which all the assumptions needed
to obtain the results summarized in items (a) and (b) hold;

(d) finally, we combine the obtained estimates with an error bound
for the approximation of the optimal stationary closed-loop
control function through neural networks with sigmoidal com-
putational units (Theorems 5.2 and 5.3).

As to relationships with the available literature, we recall that results
in the flavor of our Theorems 3.1 and 3.2 were derived in Gaggero et
al. (2013, 2014) and Gnecco and Sanguineti (2008b, 2010). However,
in the models adopted therein, the transition between pairs of states
is described by a correspondence, rather than by a state equation as
in the present paper, and the optimization horizon is finite. Moreover,
the investigation of how an upper bound on the error in approximate
optimization translates into an upper bound on the approximation error
of the optimal stationary closed-loop control function, made in our
Theorem 3.3, was not performed in the above-mentioned works.

A state-equation model was considered also in Gnecco and San-
guineti (2016), but its analysis was limited again to the finite-horizon
case, and specialized to the class of bilinear stochastic dynamical
systems. Moreover, another significant difference with respect to the
analysis performed in Gnecco and Sanguineti (2016) is in the way in
which the required degree of smoothness for the optimal (stationary)
closed-loop control function and cost-to-go function – needed for
the successive application of neural-network-based approximation error
bounds – is obtained. This is a nontrivial issue, since, usually, deriving
smoothness results for infinite-horizon optimization problems requires
more technical conditions than obtaining corresponding results for the
finite-horizon case (see Gnecco and Sanguineti, 2008b, Section 5.1 for
a short survey of such results).

Global smoothness results for the infinite-horizon case were reported
in Gnecco and Sanguineti (2008b, Section 5.2), but the degree of
smoothness is too small for the application of neural-network-based
approximation error bounds able to mitigate the curse of dimensionality,
such as the one reported in Theorem 5.1. Higher-order smoothness re-
sults were also reported in Gnecco and Sanguineti (2008b, Remark 5.7),
but their local nature (particularly, the fact that they hold on usually
unspecified sets) seriously limits the applicability of such bounds. In
contrast, the higher-order global smoothness result provided by our
Theorem 3.2(i) (inspired by Blume et al., 1982, Theorem 3.1) makes
such an application possible (see Theorems 5.2 and 5.3).

The paper is organized as follows. In Section 2, the model of
discounted infinite-horizon stochastic optimal control problems that we
address is presented. Section 3 investigates the relationships between
estimates of the approximation error of the optimal stationary closed-
loop control function and estimates of the loss in performance deter-
mined by the use of suboptimal control functions. Section 4 presents an
example for which all the assumptions made in Section 3 are verified,
and discusses how to construct other examples for which this happens.
Then, the analysis is specialized in Section 5 to the case in which neural

networks are used to approximate the optimal stationary closed-loop
control function. In particular, we focus on the possibility of mitigating
the curse of dimensionality: we provide conditions under which the
minimal number of network parameters required to achieve a desired
accuracy of the suboptimal solutions does not grow exponentially with
the number of state variables. Section 6 discusses the results and possible
extensions. All the proofs are contained in Appendix A. Other technical
details are provided in Appendix B.

2. Discounted infinite-horizon stochastic optimal control

We consider a stochastic dynamical system described by the state
equation

𝑥𝑡+1 = 𝑓 (𝑥𝑡, 𝑢𝑡, 𝜉𝑡) , 𝑡 = 0, 1,… , (1)

where 𝑥𝑡 ∈ 𝑋 ⊆ R𝑑 is a continuous state vector, 𝑥0 = �̂� ∈ 𝑋 is a given
initial state, 𝑢𝑡 ∈ 𝑈 ⊆ R𝑚 is a continuous control vector, 𝜉

𝑡
∈ 𝛯 ⊆ R𝑟

are mutually independent identically distributed random vectors, and
𝑓 ∶ 𝑋 ×𝑈 ×𝛯 → 𝑋 is a state transition function. The set 𝑋 satisfies the
constraint 𝑋 ⊇ {𝑦 ∈ R𝑑 ∶ 𝑦 = 𝑓 (𝑥, 𝑢, 𝜉), 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈, 𝜉 ∈ 𝛯}. We denote
by 𝑔

𝑡
∶ 𝑋 → 𝑈 the admissible closed-loop control functions (or policies)

at time 𝑡, assuming that 𝑥𝑡 is known to the decision maker at time stage 𝑡.
In the model presented in the paper, the admissible closed-loop control
functions are bounded and continuous functions of the state. Finally,
𝛽 ∈ (0, 1) denotes a fixed discount factor, used to actualize costs at future
time stages.

We state the following discounted infinite-horizon stochastic optimal
control problem (Problem SOCP∞). Without loss of generality, we
assume that, at each time stage 𝑡, the same admissible closed-loop
control function is applied (hence, in the following, 𝑔

𝑡
is replaced by 𝑔).

This is justified by the existence, under mild conditions, of an optimal
stationary closed-loop control function for this kind of problem (see,
e.g., Bertsekas, 2012; Bhattacharya and Majumdar, 2007).

Problem SOCP∞. Find an optimal stationary closed-loop control
function 𝑔◦ that minimizes the cost functional

𝐽 ∶= E𝜉
0
,𝜉
1
,…

{ ∞
∑

𝑡=0
𝛽𝑡ℎ(𝑥𝑡, 𝑔(𝑥𝑡), 𝜉𝑡)

}

(2)

subject to the constraints 𝑥𝑡 ∈ 𝑋, 𝑢𝑡 ∈ 𝑈 , and (1).

Remark 2.1. The definition of Problem SOCP∞ can be extended to the
limit case 𝛽 = 0, for which the functional (2) is replaced by

𝐽 ∶= E𝜉
0

{

ℎ(𝑥0, 𝑔(𝑥0), 𝜉0)
}

. (3)

This is a (typically simpler) static optimization problem.

Let us consider the optimal stationary cost-to-go function,1 which is
defined as

𝐽 ◦(𝑥𝑡) ∶= inf
𝑔
E𝜉

𝑡
,𝜉
𝑡+1

,…

{ ∞
∑

𝑘=𝑡
𝛽𝑘−𝑡ℎ(𝑥𝑡, 𝑔(𝑥𝑡), 𝜉𝑡)

}

. (4)

Then, the stationary Dynamic Programming (DP) recursive equation
(which holds under mild conditions, see Assumption 3.1(i–iii,vi) later)
is given by

𝐽 ◦(𝑥𝑡) = inf
𝑢𝑡∈𝑈

E𝜉
𝑡

{

ℎ(𝑥𝑡, 𝑢𝑡, 𝜉𝑡) + 𝛽𝐽 ◦(𝑥𝑡+1)
}

. (5)

We denote by �̃� an approximation of the optimal stationary closed-
loop control function 𝑔◦. Using such an approximate closed-loop control
function, we now consider an approximation of the optimal stationary
cost-to-go function of the form

1 In the following, depending on the context, we use either 𝑥, 𝑥0, or 𝑥𝑡 to
denote the argument of 𝐽 ◦.
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