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A B S T R A C T

This paper presents a combustion optimization system for coal-fired boilers that includes a trade-off between
emissions control and boiler efficiency. Designing an optimizer for this nonlinear, multiple-input multiple-output
problem is challenging. This paper describes the development of an integrated combustion optimization system
called ThermalNet, which is based on a deep Q-network (DQN) and a long short-term memory (LSTM) module.
ThermalNet is a highly automated system consisting of an LSTM–ConvNet predictor and a DQN optimizer. The
LSTM–ConvNet extracts the features of boiler behavior from the distributed control system (DCS) operational
data of a supercritical thermal plant. The DQN reinforcement learning optimizer contributes to the online
development of policies based on static and dynamic states. ThermalNet establishes a sequence of control
actions that both reduce emissions and simultaneously enhance fuel utilization. The internal structure of the
DQN optimizer demonstrates a greater representation capacity than does the shallow multilayer optimizer. The
presented experiments indicate the effectiveness of the proposed optimization system.

1. Introduction

Large coal-fired power plants are major contributors to total pol-
lutant emissions; consequently, they offer the possibility of reducing
emissions through increased thermal efficiency. It is difficult to under-
stand a complex mechanism such as NOx combustion and emissions with
only a limited knowledge of combustion theory and chemical kinetics;
however, physical experimentation may be expensive (Janakiraman
et al., 2016). Furthermore, to control the pollutant discharge without
impairing power generation efficiency, the power system needs to
dynamically regulate numerous control variables. In this paper, a data-
based deep neural network model is established to overcome these chal-
lenges. Time-varying relationships and combustion process mechanisms
can be obtained using the proposed model without requiring expert
knowledge. The generality and extensibility of deep neural networks
could further enable a wide range of data processing applications that
execute faster and with lower costs.

Zheng combined a support vector regression (SVR) model with
ant colony optimization (ACO) to reduce NOx emissions (Zheng et
al., 2008). Using this model requires conducting prior parametric
field experiments to determine the relationship between the operating
parameters and the combustion characteristics. Zebian simultaneous
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multivariable gradient-based optimization was performed on a pressur-
ized oxy-coal combustion process (Zebian et al., 2012). This study also
required prior knowledge of thermal dynamics and fluid mechanics to
conduct simulation experiments. Lv proposed the least squares support
vector machine (LSSVM)-based ensemble learning paradigm to predict
the NOx emissions of coal-fired boilers (Lv et al., 2013). Based on
the simulated annealing genetic algorithm (SAGA), a support vector
regression (SVR) model was presented to predict the NOx emission
concentration (Wei et al., 2013). The SVR model was also used to further
optimize the operating parameters to achieve low NOx emissions for
coal-fired boilers. However, the enormous space complexity required
by SVR models makes them difficult to scale. An enhanced general
regression neural network (Enhanced-GRNN) was designed for on-line
applications (Song et al., 2016), but the accuracy of the model suffered
from changing constraints during operation.

A distributed control system (DCS) plays a crucial role by monitoring
coal-fired boilers in real time through big data theory and electronic
technology. It also enables us to find the trends of various parameters,
including oxygen content, coal consumption, boiler inlet temperature,
and boiler efficiency. This paper describes how to adopt a deep neural
network to solve the complex time-effective modeling problem of the
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Table 1
Structure of ThermalNet: LSTM-3 denotes an LSTM layer with a 3-dimensional
output, and FC-3 denotes a fully connected layer with a 3-dimensional output.
The output is a 43-dimensional block composed of 4 consecutive time steps. The
details can be found in Section 2.

Predictor Optimizer

Input

4 × 40 4 × 3 4 × 43

Conv1D 12 × 2 LSTM-3

Conv1D
16 × 2
Conv1D
16 × 2

Conv1D 12 × 2 LSTM-3 FC-50
FC-20

Merge for FC-3 FC-16
Reward function Q values for 16 actions
Take actions on control variables

coal-fired boiler. Moreover, we apply deep reinforcement learning to
make an effective trade-off between emissions reduction and efficiency.

A deep neural network (DNN) is essentially data-driven. Due to the
nature of inherent nonlinearity and universal functional approximation
(Adhikari and Agrawal, 2013), DNNs offer an ideal approach for model-
ing data-intensive applications in practical situations. DNNs have been
successfully applied to signal feature extraction (Xiong et al., 2016; Qiu
et al., 2014) and complex systems analysis (Jiang et al., 2016). The
proposed LSTM–ConvNet predictor combines a long short-term memory
(LSTM) module with a convolutional neural network (ConvNet). The
LSTM has the advantage of a better memory structure (an architecture
with three types of gates), which enables processing historical informa-
tion and, thus, dynamically extracting the inner relation with the time
sequence (Chen et al., 2015). ConvNet is highly effective at extracting
features from original DCS signals. Features processed by ConvNet are
transmitted to the LSTM module to establish the dynamic model for
coal-fired boilers. As the monitoring data increases, the system needs to
adapt dynamically to address the ever-changing operating conditions.
The modeling accuracy depends on factors such as equipment age,
measurement noise, and signal fidelity. These features are related to
the time sequence of the entire process. Therefore, for coal-fired boiler
modeling, the LSTM–ConvNet predictor is advantageous because it can
easily handle the relation with the time sequence and – simultaneously –
avoid a lack of fidelity, making the LSTM–ConvNet predictor a desirable
choice for coal-fired boiler modeling.

Based on the previous LSTM–ConvNet predictor, a Deep Q-Networks
(DQN) optimizer is adopted to control the coal-fired boiler. A DQN is a
general-purpose reinforcement learning framework for decision-making
that has been successfully applied to many challenging problems in
stochastic and deterministic situations (Gu et al., 2016). Recently, it has
proven possible to obtain a stable and scalable general reinforcement
learning system by using deep networks to represent value function
and policy (Gu et al., 2017). A DQN can achieve satisfactory control
performance even with high-dimensional states. DQN networks, which
merely require pixels and game scores, can learn practicable policies
that outperform other linear algorithms (Mnih et al., 2015). Moreover,
they are also applicable to situations with enormous search spaces
and considerable complexity. AlphaGo is a perfect example: this DQN
managed to beat Lee Sedol, one of the top Go players in the world
(Silver et al., 2016). Applications of reinforcement learning in industrial
control are still in their early stages (Lewis and Vrabie, 2009) due to the
difficulties in finding good approximation of value functions for control
objects. The architecture of the deep Q-network enables researchers to
evaluate actions based on abstract features extracted by ConvNet. The
DQN is introduced into the control of coal-fired boilers by using the real
data recorded by the DCS.

In this paper, we present ThermalNet (see Fig. 1, Table 1), a
framework to integrate a combustion optimization architecture with

Fig. 1. The architecture of ThermalNet.

deep reinforcement learning. First, we combine ConvNet and LSTM to
develop reliable dynamic characteristics for coal-fired boilers. Second,
a DQN optimizer is used to acquire control actions (e.g., to reduce
emissions and improve boiler power efficiency). The overall design of
ThermalNet involves an LSTM–ConvNet predictor and a DQN optimizer
in the training phase. The predictor consists of the convolutional feature
extractor and the LSTM time-step connector. In the training phase, a
DCS monitoring dataset from a real thermal plant is utilized in both
the optimizer and the predictor. The training process starts with LSTM–
ConvNet, where the 4-time step input state is split into an observation
part and a performance part, which are respectively handled by the
convolutional layers and LSTM modules. After training the predictor,
the DQN optimizer is trained. Specifically, we produce a reward function
to quantify how our optimizer interacts with an environment; the
optimizer is trained to take the action that maximizes its reward. The
DQN takes the same input states, assigning the resulting Q-values to
the different actions. Furthermore, epsilon-greedy policies are used
to enable the optimizer to choose more effective actions. Under the
supervision of the predictor, the DQN regulates its inherent parameters
to obtain the ability to choose the most valuable action (i.e., the action
that results in the highest reward value).

2. Distributed control system and data set

Boiler performance directly determines the overall behavior of the
thermal plant. To achieve high boiler efficiency, regulating the fuel and
air appropriately is crucial. In a practical combustion process, it is dif-
ficult to avoid incomplete combustion; therefore, reducing combustion
emissions while simultaneously satisfying energy demand are the top
priorities for a thermal plant.

2.1. Coal-fired boiler control variables and performance variables

Based on operational experience, the control variables are air volume
𝐴𝑣, fuel content 𝐹𝑐 , oxygen content 𝑂𝑐 , and feedwater flow 𝐹𝑤. These
independent variables are directly related to the combustion process;
it is convenient to regulate them in practice. Other input variables,
such as the boiler inlet air temperature 𝑇𝑏 and the fresh-steam turbine
pressure 𝑃𝑓𝑠.𝑡, are used as reference variables Ref 𝑡 in the model (Fig. 2).
Furthermore, a series of preprocessing steps, including filtering, scaling,
and normalization, are performed in the training phase. Together, the
control variables and observational variables are

Con𝑡 =
[

𝐴𝑡
𝑣, 𝐹

𝑡
𝑐 , 𝑂

𝑡
𝑐 , 𝐹

𝑡
𝑤
]𝑇 ∈ R4

Obs𝑡 =
[

Ref 𝑡 Con𝑡
]𝑇 ∈ R40

(1)

In this paper, all the variables (see Table 7) are assumed to be continu-
ous. In the training process, the ranges of all variables are normalized
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