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A B S T R A C T

The Error Correcting Output Codes offer a proper matrix framework to model the decomposition of a multiclass
classification problem into simpler subproblems. How to perform the decomposition to best fit the data while
using a small number of classifiers has been a research hotspot, as well as the decoding part, which deals with
the subproblem combination. In this work, we propose an evidential unified framework that handles both the
coding and decoding steps. Using the Belief Function Theory, we propose an efficient modelling, where each
dichotomizer in the ECOC strategy is considered as an independent information source. This framework allows
us to easily model the refutation information provided by sparse dichotomizers and also to derive measures to
detect tricky samples for which additional dichotomizers could be needed to ensure decisions. Our approach was
tested on hyperspectral data used to classify nine different types of material. According to the results obtained, our
approach allows us to achieve top performance using compact ECOC while presenting a high level of modularity.

1. Introduction

Automatic multiclass image classification is a major topic in pattern
recognition in computer vision and numerous methods have already
been proposed, e.g. Geman and Geman (1987), Boser et al. (1992),
Crammer and Singer (2002), Wang et al. (2010) and Krizhevsky et
al. (2012). With regard to the complexity of some types of data
(e.g. hyperspectral data images) and the increasing number of classes
(e.g. for applications requiring finer and finer classes), the ‘Divide and
Conquer’ strategy has been proposed (Brassard and Bratley, 1996). This
strategy consists of splitting the multiclass problem in a set of binary
classification problems simpler to solve. Following such a strategy, the
Error Correcting Output Codes (Dietterich and Bakiri, 1995; Allwein et
al., 2000) have been designed to address both involved problems of
decomposition of the multiclass problem and interpretation of binary
classification outputs. For instance, the one-versus-one (OVO) and one-
versus-all (OVA) strategies (Hastie and Tibshirani, 1998; Rifkin and
Klautau, 2004) are specific ECOC. More generally, given a set of classes
𝛺 of cardinality 𝑁 , an ECOC matrix 𝑴 of size 𝑁 × 𝑙 with values in
{−1, 0, 1} corresponds to a decomposition of the multiclass problem in
𝑙 binary problems called dichotomizers. Each dichotomizer, coded by
one 𝑴 column, aims at classifying any given sample between two non
overlapping subsets of classes. If the two class subsets form a partition
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of 𝛺, the dichotomizer is said to be dense and 𝑴𝑖𝑗 ∈ {−1, 1}, where
1 and −1 designate the opposing classes. Otherwise, it is said to be
sparse and 𝑴𝑖𝑗 ∈ {−1, 0, 1}, where 0 designates the classes that are not
involved in the classifier training. Now, ECOC research still includes
open-ended questions either for coding (i.e. defining 𝑴) or for decoding
(i.e. assigning class label according to 𝑴 answers), e.g. Bai et al. (2016),
Santhanam et al. (2016), Xu et al. (2016) and Bautista et al. (in press).

1.1. ECOC coding related work

Concerning coding, initial methods such as Allwein et al. (2000)
only consider constraints on 𝑴 : size, type of dichotomizers and distance
between 𝑴 rows, i.e. class codeword. However, using this approach, the
number of dichotomizers remains an a priori parameter difficult to set
and this predetermined behaviour does not allow us to take into account
the dichotomizer’s specific performance.

Alternatively, performance-driven methods have been proposed.
For example, Bai et al. (2016) assesses the performance of every
dichotomizer (among the whole set of potential dichotomizers given
the set of classes) and builds 𝑴 by favouring dichotomizers exhibiting
the highest performance. However, besides being computationally very
expensive, such an approach fails to provide some redundancy where
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it is the most needed, namely in order to separate close or ambiguous
classes.

Then, to address this point, data-driven approaches have been pro-
posed. The data are analysed to understand which classes are difficult
to separate and to infer the ECOC matrix optimizing their separation.
Among the criteria to analyse the data, the use of a pre-computed confu-
sion matrix is rather popular, e.g. Escalera et al. (2008), Gao and Koller
(2011) and Zhou et al. (2016), whereas Pujol et al. (2006) considers the
mutual information within the dichotomizer sets. For the construction of
ECOC, some hierarchical constraints are often introduced, i.e. starting
from easily distinguishable superclasses and adding dichotomizers to
distinguish classes within these superclasses (Pujol et al., 2006; Zhou et
al., 2016), or conversely (Escalera et al., 2008). For instance, Gao and
Koller (2011) proposes a joint optimization process to learn a hierarchy
of classifiers in which each node corresponds to a binary subproblem.
Nonetheless, although the hierarchical configuration speeds up the
testing step, it is highly prone to error propagation. Some other data-
driven approaches explicitly focus on removing ambiguities between
similar classes. In Pujol et al. (2008), the ECOC matrix is iteratively
constructed as follows: at each iteration, the pair of the most confused
classes is derived from the current confusion matrix and the ECOC
matrix is extended with new dichotomizers that both separate the
ambiguous classes and that show good performance. In Bautista et al.
(in press), by factorizing the confusion matrix, a dense ECOC matrix is
generated so that the ambiguous classes have distant codewords. Finally,
note that all cited data-driven ECOC matrix design solutions rely on
learning data, which may make their results prone to errors when faced
with unexpected class ambiguities.

1.2. ECOC decoding related work

The simplest decoding is the minimization of the Hamming distance,
(Nilsson, 1965), based on the binary decisions of the dichotomizers.
Then, the loss-based decoding, (Allwein et al., 2000), has been proposed
to take into account the confidence levels associated with binary
decisions, according to the considered loss function and a calibration
process of the dichotomizer outputs or scores. If these approaches have
shown to be efficient for dense ECOC, they come up against modelling
the ambiguity introduced by the absent classes in the sparse classifiers
(0 values in 𝑴). In the Hamming and classic loss-based decoding, any
answer of a 0-valued class is considered irrelevant and a fixed weight
is assigned. However, as underlined by Pujol et al. (2008), this fixed
weight creates a bias when there is an imbalance among the classes
involved in sparse classifiers. Therefore Escalera et al. (2010) proposed
a new ternary decoding method that is robust to this bias. However,
Escalera et al. (2010) still misses the opportunity to exploit additional
information from the 0-valued class answers, e.g. in terms of refutation
of some classes, as we propose in this work using belief functions.

1.3. Belief function related work

The evidential framework was initially defined by A. Dempster and
G. Shafer (Shafer, 1976), while Ph. Smets proposed his interpretation
in terms of belief transfer, (Smets and Kennes, 1994). This theory has
been widely used to model different kinds of uncertainty in classification
problems (e.g. Hegarat-Mascle et al., 1997; Tabassian et al., 2012; Liu
et al., 2014), detection and recognition (e.g. Xu et al., 1992; Mercier
et al., 2009), tracking (e.g. Smets and Ristic, 2007; André et al., 2015),
object reconstruction (e.g. Díaz-Más et al., 2010; Rekik et al., 2016) and
localization (e.g. Roquel et al., 2014) etc. A major strength of belief
function theory is that it avoids introducing bias in cases of partial ig-
norance (conversely to an equiprobability assumption or the mentioned
fixed cost). This makes it all the more important that different sources
of information are combined, sources that may correspond to different
classifier outputs when dealing with a classification problem. In this
case, the basic belief assignment (or bba) allocation step also handles

the calibration process of the classifier outputs. Now, numerous bba
allocation methods, among the ones already proposed, are actually data-
driven approaches. For example, Xu et al. (1992) proposes a method to
build bbas for a classifier using the recognition rate, the substitution
rate and the rejection rate derived from its confusion matrix; Parikh et
al. (2001) considers the classifier’s performance values for the different
classes; and more recently, Deng et al. (2016) which aims at combining
several multiclass classifiers, constructs a bba per multiclass classifier
from its crisp outputs (labels) and learned precision–recall rates. Now,
conversely to Deng et al. (2016), authors generally consider soft outputs
and even Xu et al. (2016) proposes to take into account not only the
dichotomizer score value itself but also the number of samples per score
value by extending the classic probabilistic calibration methods such as
the logistic regression to the belief function framework. Finally note that
the final decoding depends on the interpretation of the dichotomizers
bbas: either as independent information sources, or as proposed in Quost
et al. (2007), as conditioned pieces of information (allowing, at least in
the classic OVO and OVA cases, to recover the multiclass bba from an
optimization problem).

In our approach, we propose a full ECOC strategy (coding and
decoding) that takes advantage of the modelling ability of the belief
function theory framework. For the decoding part, each dichotomizer
answer will be modelled by a belief function assignment depending on
both the confidence score and the parameters of the calibration process.
The method we propose extends the work of Lachaize et al. (2016).

For the coding part, we use evidential indices such as conflict to
dynamically extend any ECOC matrix in such a way as to identify and
remove remaining ambiguities, rendering the proposed coding method
auto-adaptive.

The paper is organized as follows: Section 2 introduces the belief
function tools and notations used in this work. Section 3 explains
the proposed evidential classification including the ECOC coding and
decoding processes. Section 4 discusses the results obtained from exper-
iments using hyperspectral data acquired for a material classification
application. Section 5 gathers the conclusions and perspectives of this
work.

2. Preliminaries on belief function theory (BFT)

In this section, we introduce the tools and notations used in this
study. For a reader not familiar with BFT, we refer to the founding book,
(Shafer, 1976).

2.1. Basic concepts

Let 𝛺 denote the discernment frame, i.e. the set of mutually
exclusive hypotheses representing the solution possibilities and let 2𝛺

denote the power set of 𝛺, i.e. the set of subsets of 𝛺 elements. 2𝛺

cardinality is denoted |

|

2𝛺|
|

and it is equal to 2|𝛺|. A bba (basic belief
assignment) is defined through itsmass function 𝑚 such that: 𝑚 ∶ 2𝛺 →

[0, 1],
∑

𝐴∈2𝛺𝑚 (𝐴) = 1. If 𝑚 (𝐴) > 0, 𝐴 is said to be a focal element and
𝑚 (𝐴) represents the belief that the solution is in 𝐴, without having to
specify the affiliation of the solution to any subset of 𝐴. In the following,
we denote by 𝑚 the set of focal elements of the bba 𝑚. Under the
open world assumption, 𝛺 may be non exhaustive and ∅ may be a focal
element (∅ ∈ 𝑚), with its mass representing the belief that the solution
is not in 𝛺.

Refinement and coarsening are dual operators that allow some
transformations of the discernment frame and its associated bbas.
Specifically, let 𝛩 and 𝛺 be two discernment frames such that |𝛩| < |𝛺|.
A refinement from 𝛩 to 𝛺 is defined by a function 𝜌 ∶ 𝛩 → 2𝛺 such that
the set of the 𝜌 images ({𝜌 (𝐵) , 𝐵 ∈ 𝛩}) is a partition of 𝛺, noted 𝜌 (𝛺):
∀𝐴 ∈ 𝜌 (𝛺) ,∃!𝐵 ∈ 𝛩 ∣ 𝐴 = 𝜌 (𝐵). Then, specifying by a superscript on
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