Engineering Applications of Artificial Intelligence 74 (2018) 312-321

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Contents lists available at ScienceDirect

Enginearng Apptcations of
Artificial
Intelligence

Application of new training methods for neural model reference control ]

Amir H. Jafari ?, Martin T. Hagan " *

Check for
updates

a George Washington University, Washington, DC, United States

b Oklahoma State University, Stillwater, OK, United States

ARTICLE INFO

Keywords:

Recurrent neural network
Model reference control
SOM

Novelty sampling
Magnetic levitation

ABSTRACT

In this paper, we introduce new, more efficient, methods for training recurrent neural networks (RNNs) for
system identification and Model Reference Control (MRC). These methods are based on a new understanding of
the error surfaces of RNNs that has been developed in recent years. These error surfaces contain spurious valleys
that disrupt the search for global minima. The spurious valleys are caused by instabilities in the networks, which
become more pronounced with increased prediction horizons. The new methods described in this paper increase
the prediction horizons in a principled way that enables the search algorithms to avoid the spurious valleys.
The work also presents a novelty sampling method for collecting new data wisely. A clustering method
determines when an RNN is extrapolating, which occurs when the RNN operates outside the region spanned by
the training set, where adequate performance cannot be guaranteed. The new method presented in this paper
uses a clustering method for extrapolation detection, and then the novel data is added to the original training
set. The network performance is improved when additional training is performed with the augmented data set.

The new techniques are applied to the model reference control of a magnetic levitation system. The techniques
are tested on both simulated and experimental versions of the system.

1. Introduction

RNNs are good candidates to represent nonlinear dynamic systems,
as demonstrated by their application in many areas, such as system iden-
tification and control (Hagan and Demuth, 1999), long term predictions
of chemical processes (Su et al., 1992), financial analysis of multiple
stock markets (Roman and Jameel, 1996) and phasor detection (Kamwa
et al.,, 1996). However, it is well known that RNNs are difficult to
train (Atiya and Parlos, 2000; Gori et al., 2010). (It should be noted that
we are using RNN to designate any discrete time neural network with
one or more feedback connections that contain one or more delays.)

Two of the proposed reasons for the difficulties in RNN training
are the problems of vanishing and exploding gradients (Bengio et al.,
1994; Pascanu et al., 2012). When a recurrent network is stable (or,
more precisely, a given trajectory is stable), effects of inputs to the
network diminish as they move forward in time, and, consequently, the
gradients of performance with respect to inputs and weights diminish
as they are propagated backward in time. This is referred to as the
vanishing gradient problem, which makes it difficult to learn long-term
dependencies between inputs and outputs, if the initial weights of the
network produce a stable response. This is generally not as important
an issue in nonlinear system identification as it is, for example, in

* Corresponding author.
E-mail address: mhagan@okstate.edu (M.T. Hagan).

https://doi.org/10.1016/j.engappai.2018.07.005

natural language processing, where the meaning of a word might be
more accurately identified by context in the previous paragraph.

The exploding gradient problem is caused by the complement of
the vanishing gradient problem. If the network is unstable (a given
trajectory is unstable), the effects of inputs to the network grow as
they propagate forward in time. The gradients will therefore grow as
they move backward in time. This is connected to the existence of
spurious valleys in the error surfaces of recurrent networks (Jesus et
al., 2001; Horn et al., 2009; Phan and Hagan, 2013a). These valleys
are not associated with the true minimum of the surface, or to the
problem the RNN is trying to solve. They are strongly dependent on the
input sequence in the training data. (If the input sequence changes, even
though the system being modeled stays the same, the valleys will move
significantly.) Any batch search algorithm is very likely to be trapped in
these spurious valleys. These valleys occur in regions of instability, as
was shown in Horn et al. (2009) and Phan and Hagan (2013a).

Alternate training methods have been developed to mitigate the
effects of these spurious valleys (Jesus et al., 2001; Phan and Hagan,
2013b). Because the spurious valleys depend so strongly on the input
sequence, one alternate method is to divide the data into multiple
subsequences, or minibatches. The subsequences can be alternated
during training, which will move the valleys and prevent the algorithm

Received 8 August 2017; Received in revised form 16 June 2018; Accepted 14 July 2018

0952-1976/© 2018 FElsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.engappai.2018.07.005
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2018.07.005&domain=pdf
mailto:mhagan@okstate.edu
https://doi.org/10.1016/j.engappai.2018.07.005

A.H. Jafari, M.T. Hagan

from becoming trapped (Jesus et al., 2001). Recently, Phan and Hagan
(2013b) demonstrated a modified procedure, in which the error gradient
associated with each subsequence is monitored during training. Large
gradient magnitudes indicate that the training algorithm is located
within a spurious valley for those subsequences, and so those subse-
quences can be removed temporarily from the training process.

Another technique that was introduced in Phan and Hagan (2013b)
was to increase the prediction horizon gradually during the training
process. The initial training segment used a one-step-ahead prediction.
This was increased at each training segment, until the prediction horizon
during the final training segment covered the full length of the original
sequences. This process can require long training times, if the prediction
horizon is increased too slowly, but will fail to converge if the prediction
horizon is increased too quickly. In this paper, we are introducing
a method that searches for an optimal horizon step at each training
segment (Jafari and Hagan, 2015). We demonstrate the process on a
practical system identification problem.

Even after a recurrent network has been successfully trained, sat-
isfactory performance can only be ensured if the network inputs are
similar to those in the training set. This is also true for feedforward
networks, but extrapolation is a more urgent problem for recurrent net-
works, where, because of feedback connections, responses can become
unstable when network inputs (including feedback signals) fall outside
the training set. The process of detecting network inputs that are outside
the training set is called novelty detection (Pimentel et al., 2014). In this
paper, we are proposing a type of novelty detection based on clustering.
We demonstrate that the proposed technique is able to detect incipient
network failures and instabilities well before they occur.

The clustering method we use for novelty detection is the Self-
Organizing Map (SOM) (Kohonen, 1990). This is a topology preserving
network, in that neurons within the network have neighbor relationships
that are preserved by the training process. The idea will be to train
the SOM on composite vectors that contain the inputs to the network
augmented with the target network output. The SOM will divide the
training data into clusters, so that each input/target pair will be near
one cluster center. When a new data point appears that is not near any
cluster center, extrapolation will be identified.

We are also going to use the SOM to collect additional data in
order to improve the training procedure. It is unlikely that the original
data set will effectively cover the full range of conditions where the
network will be used. The RNN will extrapolate when network inputs
fall outside the space spanned by the training data set. We are going to
collect additional training data when the SOM indicates extrapolation.
Then, we will retrain the RNN network with the new data combined
with the initial training data set. This procedure is known as novelty
sampling (Raff et al., 2005). This will be done in phases until no novel
conditions are detected after many additional tests.

Some of these ideas were first presented in Jafari and Hagan (2015),
but they will be expanded in three ways in this paper. First, we introduce
the use of the SOM for novelty sampling, which is used to select new
data for the training process. Secondly, in addition to the modeling of
dynamic systems, we also apply novelty sampling, and the other new
recurrent network training methods, to the training of a model reference
control (MRC) system, represented as a larger RNN that contains both
the plant model and a neurocontroller. Finally, all of the new procedures
will be tested on a magnetic levitation system — both simulated and
experimental versions.

This paper is organized as follows. In Section 2, we explain the
modified training algorithm, in which subsequences are removed from
the training set when their gradient becomes large. Next, in Section 3,
we introduce the new method for determining the optimal prediction
horizon. In Section 4, we describe the recurrent network modeling of
a magnetic levitation system. In Section 5 we enhance the models by
adding new data by novelty detection. Next, in Section 6, we describe
how the new procedures can be used to develop model reference
controllers. In Section 7, we perform experimental verification of the
methods on an experimental prototype maglev system.

313

Engineering Applications of Artificial Intelligence 74 (2018) 312-321
2. Modified training for recurrent neural networks

In order to train an RNN to approximate a dynamic system, we need
appropriate data. Unlike static networks, where each input/target pair
stands on its own, RNN data must consist of ordered sequences of inputs
and target outputs. When training recurrent networks, the length of the
sequence determines the prediction horizon. If the length of a sequence
increases by one, then the prediction horizon increases by one. For
example, if the training sequences have a length of 5 time steps, and
the maximum number of delays in the network is 2, then training the
closed-loop network means that we are doing 3-step-ahead predictions.

For the method introduced in Phan and Hagan (2013b), training
begins with short prediction horizons, and then the prediction horizons
increase as training proceeds. Short prediction horizons require short se-
quences, so the original training sequences are divided into multiple sub-
sequences. The network is trained for multiple iterations at a given pre-
diction horizon. We call this a training segment. After the completion of a
training segment, the prediction horizon is increased by the horizon step,
which requires that the original training sequences be subdivided again.

The key concept introduced in Phan and Hagan (2013b) was that,
because the spurious valleys are caused by the input sequence, each
training subsequence will have a different set of valleys. If training
becomes trapped in a valley, the sequence that owns that valley could
then be removed from the training set. In order to determine which
sequence to remove, the individual training gradients for each sequence
are computed, and the sequence with the largest gradient is removed,
since gradients will be highest inside the spurious valleys. To determine
when the training algorithm entered a valley, Phan and Hagan (2013b)
proposed using a feature of the Levenberg—Marquardt (LM) training
algorithm (Hagan and Menhaj, 1994), as described below.

The LM update rule for weights x, at the kth iteration is

@

where e is the network error and J is the Jacobian matrix of the
network errors with respect to the weights. J can be computed using
backpropagation. For RNNs, we need to use dynamic backpropagation.
Jacobian calculations for a general dynamic network can be found
in Jesus and Hagan (2007).

The important feature of the LM algorithm is that as u;, becomes
large it reverts to steepest descent with a small learning rate, which
guarantees that the performance function F(x) (typically mean square
error) must decrease if y is made large enough. The algorithm starts
with a small 4, and if F(x) does not decrease at any iteration, the
algorithm increases y, by factor of 10. If F(x) decreases, , is reduced
by a factor of 10, because the algorithm converges faster in the Gauss—
Newton mode (y;, small). The algorithm is stopped, if x4, becomes too
large. This indicates that F(x) does not decrease, even when a very small
step in the steepest descent direction is taken. This indicates that the
algorithm is stuck in one of the spurious valleys, which tend to be steep
and narrow.

The other approach suggested in Phan and Hagan (2013b) was to
start the first training segment with one-step-ahead predictions and then
to increase the prediction horizon gradually for each successive training
segment.

The training procedure from Phan and Hagan (2013b) can be
summarized as follows (Method 1):

ax = = [3T I x) + T I (xpe(x)

1. In the first training segment, use open-loop training (one-step-

ahead predictions). All training segments involve maxit iterations

of the training algorithm.

Closed-loop training with increasing prediction horizon: Do k-

step-ahead prediction (k > 2). This includes segmentation of the

original long sequences into smaller subsequences.

3. At each iteration of the LM algorithm, if 4 reaches y,,,,, remove
the subsequence with largest gradient. If F(x) does not decrease,
keep removing the subsequence with next largest gradient until



Download English Version:

https://daneshyari.com/en/article/6854146

Download Persian Version:

https://daneshyari.com/article/6854146

Daneshyari.com


https://daneshyari.com/en/article/6854146
https://daneshyari.com/article/6854146
https://daneshyari.com

