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A B S T R A C T

We first describe the basics of fuzzy systems modeling. Fundamental to this is a collection of rules, a rule base,
in which the rule antecedents are fuzzy subsets. We first look at issue of the determination of the firing level of
a rule for fuzzy set inputs and the subsequent rule base output. We next consider the situation where the system
input is uncertain and modeled by a Dempster–Shafer belief structure. Here our input is a collection of fuzzy
subsets and the true input fuzzy set is selected based on a probability distribution over these potential input
fuzzy sets. We next consider the situation where our input is modeled via a generalized belief structure where
the determination of applicable input fuzzy set is modeled via a measure over these potential input fuzzy sets.

1. Introduction

Fuzzy systems modeling (Mendel, 2017; Pedrycz and Gomide, 2007)
is clearly the most successful application of Zadeh’s fuzzy set theory
(Zadeh, 1965). Using this idea we are able to model complex in-
put/output functions by imprecisely partitioning the input space using
fuzzy sets, and then associating with each fuzzy set in this partitioning
an appropriate output. One advantage of this approach is that it allows
humans to more easily express the component relationships. In fuzzy
systems modeling each of these input/output pairs have come to be
called a rule whose antecedent is a fuzzy set and the collection of these
component rules is called a rule base. The determination of the output
of a fuzzy systems model for given value for the input is implemented
via a very natural process. The first step is to obtain the relevance
of a rule to the given input, this is called the rule firing level. The
systems output is then obtained as a kind of weighted average of
individual rule outputs where the weight associated with a given rule
is based on its firing level for the system input. The original formalism
for fuzzy systems modeling was due to Mamdani and Assilian (1975)
and Mamdani (1976) however the prevalent approach to fuzzy systems
modeling is based on the ideas of Takagi and Sugeno (1985). Most work
on fuzzy systems modeling has focused on two types of systems input
values; precise values and imprecise values captured using fuzzy sets.
When the input to the system is a precise value a rule firing level is
simply the membership grade of the input in the rule antecedent fuzzy
sets. When the input is a fuzzy set obtaining the rule firing level involves
the determination of the satisfaction of one imprecise object, fuzzy set,
by another imprecise object, fuzzy set. As we shall see a reasonable value
for the firing level in this case is an interval. In this work we go beyond
these two situations. First we consider the situation were the system
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input value is modeled by a Dempster–Shafer belief structure (Dempster,
1967; Shafer, 1976; Dempster, 2008; Yager and Liu, 2008). This type of
input has probabilistic uncertainty as well imprecision. Next we consider
the situation were the input is modeled by generalized belief structure
(Yager, 2017, 2018) here we have measure guided uncertainty (Yager,
2016) as well imprecision. In these situations where the systems input
manifests uncertainty as well as imprecision the determination of rule
firing level as well the systems outcome becomes more complex. We
see that the novelty and benefit of this paper is that it provides tools
for working with fuzzy systems models for various types of uncertain
inputs.

The structure of the paper is as follows we first discuss the idea of
fuzzy systems modeling and look at the determination of the firing level
of a rule for fuzzy set inputs. We then consider the situation when input
is uncertain and modeled by a Dempster–Shafer belief structure with
fuzzy focal elements. We next look the case where our input is modeled
via a generalized belief structure.

2. Basics of fuzzy systems modeling

We now describe the basic framework of fuzzy systems models
(Mendel, 2017; Pedrycz and Gomide, 2007; Ross, 2010). Assume 𝑉𝑗 for
𝑗 = 1 to 𝑟 are a collection of variables taking their values in the spaces
𝑋𝑗 respectively, these are called the input variables. We let 𝑈 be another
variable taking its value in the space 𝑌 , this is called the output variable.
We let 𝑊 for 𝑘 = 1 to t be another collection of variables which can
contain some of the 𝑉𝑗 . Central to the fuzzy system modeling technique
is a rule base consisting of a collection of 𝑖 = 1 to n rules of the form.

If 𝑉1 is 𝐴𝑖1 and 𝑉2 is 𝐴𝑖2 and…and 𝑉𝑟 is 𝐴𝑖𝑟 then 𝑈 is 𝑓𝑖(𝑊1,… ,𝑊𝑡).
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Here 𝐴𝑖𝑗 is a normal fuzzy subset of the universe 𝑋𝑗 and 𝑓𝑖 is a function
that maps into the space 𝑌 . We note that more sophisticated antecedent
formulations then the simple ‘‘anding’’ of the input variables is possible
using various aggregation operators, however for our purpose we shall
use the basic ‘‘anding’’.

Another simplifying assumption we shall make here is with respect to
the form of 𝑓𝑖(𝑊1,… ,𝑊𝑡), here we shall assume that the 𝑓𝑖(𝑊1,… ,𝑊𝑡)
are constants, 𝑓𝑖(𝑊1,… ,𝑊𝑡) = 𝑏𝑖. This formulation is assumed in most
applications of the Takagi–Sugeno methodology (Takagi and Sugeno,
1985; Sugeno and Takagi, 1983). So the rule base we will work with is
a collection of 𝑛 rules, 𝑅𝑖, for 𝑖 = 1 to 𝑛, of the form.

If 𝑉1 is 𝐴𝑖1 and 𝑉2 is 𝐴𝑖2 and… ..and 𝑉𝑟 is 𝐴𝑖𝑟 then 𝑈 is 𝑏𝑖.

Given information about the input variables, which we denote as 𝑉𝑗
is Inf(𝑗), we proceed to implement the fuzzy systems model as follows.

(1) For each antecedent component 𝑉𝑗 is 𝐴𝑖𝑗 we calculate its sat-
isfaction, 𝜏𝑖𝑗 ∈ [0,1], by the value of 𝑉𝑖, Inf(𝑗). We indicate 𝜏𝑖𝑗 =
Val(𝐴𝑖𝑗∕Inf(𝑗)).

(2) For each rule 𝑅𝑖 we calculate its firing level, 𝜏𝑖 =
∏𝑟

𝑗=1𝜏𝑖𝑗 .
(3) Using this we obtain the system output 𝑈 = 𝑏, where 𝑏 =

∑𝑛
𝑖=1𝜏𝑖𝑏𝑖

∑𝑛
𝑖=1𝜏𝑖

.

Here we are taking a weighted average of the rule outputs based on their
current firing levels.

A number of variations of this approach are possible, for example for
we can calculate b such that 𝑏 = 𝑏𝑘 where 𝜏𝑘 = Max𝑖[𝜏𝑖], here 𝑏 is the
output of strongest fired rule. This approach is particularly useful in the
cases where the output space 𝑌 does not allow arithmetic operations.
Another approach to the selection of 𝑏 is the Random Experiment
Decision, RED approach. Here we associate with each 𝑏𝑖 a profitability
𝑝𝑖 = 𝜏𝑖

𝛴𝑖𝜏𝑖
and select the value 𝑏 by the performance of a random

experiment where 𝑝𝑖 is the probability of selecting 𝑏𝑖. This also works
in situations in which the space 𝑌 does not allow arithmetic operations.
This RED approach is particularly useful in competitive decision-making
situations when we do not want a given input to always result in the
same action.

In the case where we desire a more complex antecedent relationship
we have available many aggregation operators (Beliakov et al., 2007)
to calculate 𝜏𝑖 as 𝜏𝑖 = Agg𝑖(𝜏𝑖1,… , 𝜏𝑖𝑟).

3. Determination of antecedent firing levels

We now consider the determination of the firing levels for the
individual antecedent components, the 𝑉𝑗 is 𝐴𝑖𝑗 , given the knowledge
Inf(𝑗) about the value of the variable 𝑉𝑗 . In the following, in order to
avoid unnecessary notational complexity we shall, when it does not
involve a loss of generality, consider one generic rule

If 𝑉1 is 𝐴1 and 𝑉2 is 𝐴2,…and 𝑉𝑛 is 𝐴𝑛 then 𝑈 is 𝑏.

In this case where we know the exact value of 𝑉𝑗 , 𝑉𝑗 = 𝑎𝑗 then
𝜏𝑗 = 𝐴𝑗 (𝑎𝑗 ), the membership grade of 𝑎𝑗 in 𝐴𝑗 . Once we introduce some
uncertainty and/or imprecision in the information about the value of 𝑉𝑗
the situation becomes complex. In Yager (2015) we considered the case
when our knowledge about 𝑉𝑗 is expressed by a normal fuzzy subset 𝐸𝑗
of 𝑋𝑗 . Here at least one element of the space 𝑋𝑗 has membership of one
in 𝐸𝑗 .

In Yager (2015) we provided a general formulation for the function
used to model 𝜏𝑗 , the satisfaction of the antecedent condition 𝑉𝑗 is 𝐴𝑗
given 𝑉𝑗 is 𝐸𝑗 . We shall express this as the validity of 𝐴𝑗 given 𝐸𝑗 and
denote 𝜏𝑗 as Val(𝐴𝑗∕𝐸𝑗]. In the following for notational simplicity we
shall suppress the 𝑗 and simply use the notation Val(𝐴∕𝐸). Thus here
we are interest in the satisfaction of the condition 𝑉 is 𝐴 given the
knowledge that 𝑉 is 𝐸.

Definition. If 𝐴 and 𝐸 are two normal subset of 𝑋 we shall say a
validity operator, Val(𝐴∕𝐸) is a credible quantification of the degree

of satisfaction of 𝑉 is 𝐴 given 𝑉 is 𝐸 if Val(𝐴∕𝐸) has the following
properties:

(1) If 𝐸 is a singleton, 𝐸 = {𝑥}, then Val(𝐴∕𝐸) = 𝐴(𝑥)
(2) If 𝐴 is the whose space, 𝐴 = 𝑋, then for any 𝐸, Val(𝐴∕𝐸) = 1
(3) If 𝐴 ∩ 𝐸 = ∅ then Val(𝐴∕𝐸) = 0
(4) Val(𝐴∕𝐸) is monotonic in 𝐴, if 𝐴1 ⊆ 𝐴2 then Val(𝐴1∕𝐸) ≤

Val(𝐴2∕𝐸).

In Yager (2015) a number of formulations for Val(𝐴∕𝐸) were
discussed. One formulation is the measure of possibility (Zadeh, 1979)
here

𝜏 = Val(𝐴∕𝐸) = Poss(𝐴∕𝐸) = Max𝑥[𝐴(𝑥) ∧ 𝐸(𝑥)].

The use of possibility has one very questionable feature if 𝐸 = 𝑋, then
Val(𝐴∕𝐸) = 1. Thus we get complete satisfaction to the requirement 𝑉
is 𝐴 in the case when we know noting about the current value of 𝑉 other
than 𝑉 lies in 𝑋. More generally since Poss(𝐴∕𝐸) increases as the fuzzy
subset 𝐸 increases, we see that the firing level of 𝑉 is A increases as the
imprecision in the knowledge about 𝑉 increases.

Another approach is to use the measure of certainty (Zadeh, 1979),
here

𝜏 = Val(𝐴∕𝐸) = Cert(𝐴∕𝐸) = 1 − Poss[𝐴∕𝐸] = 1 −Max𝑥[𝐴(𝑥) ∧ 𝐸(𝑥)].

Here we are obtaining the firing level as the negation of possibility of not
𝐴 being satisfied. Here if 𝐸 = 𝑋, the know nothing we get 𝜏 = Val(𝐴∕𝐸)
= 0.

It can be shown that Cert(𝐴∕𝐸) ≤ Poss(𝐴∕𝐸). So possibility always
gives us at least as large a firing level as certainty. Here we see a
reasonable conservative observation is that Cert(𝐴∕𝐸) ≤ 𝜏 ≤ Poss(𝐴∕𝐸),
that is Val(𝐴∕𝐸) ∈ [Cert(𝐴∕𝐸),Poss(𝐴∕𝐸)].

One can obtain some other less conservative formulations for
Val(𝐴∕𝐸) as particular points in this interval. One notable example
of Val(𝐴∕𝐸) described in Yager (2015) is based on the proposition of
elements in 𝐸 that are also in 𝐴

Prop(𝐴∕𝐸) =
𝛴𝑗𝐴(𝑥𝑗 )𝐸(𝑥𝑗 )

𝛴𝑗𝐸(𝑥𝑗 )
.

In the case where 𝐸 = 𝑋, Prop(𝐴∕𝐸) = 𝛴𝑗𝐴(𝑥𝑗 )
𝛴𝑗𝑥(𝑥𝑗 )

= 𝛴𝑗𝐴(𝑥𝑗 )
𝑛 = Average

membership grade of 𝐴.
In Yager (2015) the author introduced another formulation for

Val(𝐴∕𝐸) based on the Choquet integral and denoted CP(𝐴∕𝐸). In the
following we let 𝜌 be an index function so 𝜌(𝑘) is the index of the element
in domain 𝑋 of 𝑉 with the 𝑘th largest value for 𝐴(𝑥𝑖), here 𝐴(𝑥𝜌(𝑘)) has
the 𝑘th largest membership grade in 𝐴. Using this 𝜌 we define

CP(𝐴∕𝐸) =
𝑛
∑

𝑗=1
(Max𝑘≤𝑗 [𝐸(𝑥𝜌(𝑘))] − Max𝑘≤𝑗−1[𝐸(𝑥𝜌(𝑘))])𝐴(𝑥𝜌(𝑗)).

By convention in the above for 𝑗 = 1 we define Max𝑘≤𝑗−1[𝐸(𝑥𝜌(𝑘))] = 0
that is MAX𝑘≤0[𝐸(𝑥𝜌(𝑘))] = 0.

The validity operator is an interesting operator, in Yager (2015)
a number of properties of this validity operator were described. If
𝑤1,… , 𝑤𝑞 ∈ [0, 1] and 𝛴𝑖𝑤𝑖 = 1 then if Val𝑖(𝐴∕𝐸) are a collection of
validity operators then the operator Val(𝐴∕𝐸) = 𝛴𝑖𝑤𝑖Val𝑖(𝐴∕𝐸) is also a
validity operator. Thus the linear combination of validity operators is a
valid operator. One notable example of linear combination is Val(𝐴∕𝐸)
= 𝛼 Poss(𝐴∕𝐸) + 𝛼 Cert(𝐴∕𝐸).

If Val1,… ,Val𝑞 are validity operators then Val(𝐴∕𝐸) = Max𝑖
[Val𝑖(𝐴∕𝐸)] is a validity operator also 𝑉 (𝐴∕𝐸) = Min𝑖[Val𝑖(𝐴∕𝐸)] is
a validity operator.

More generally if Val1,… ,Val𝑞 are validity operators and 𝐻 is any
mean aggregation operator (Beliakov et al., 2007) then Val(𝐴∕𝐸) =
𝐻(Val1(𝐴∕𝐸), Val2(𝐴∕𝐸), . . . , Val𝑞(𝐴∕𝐸)) is a validity operator.
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