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a b s t r a c t

Radial basis functions are augmented with a posteriori bias in order to perform robustly when used as
metamodels. Recently, it has been proposed that the bias can simply be set a priori by using the normal equation,
i.e., the bias becomes the corresponding regression model. In this study, we demonstrate the performance
of the suggested approach (𝑅𝐵𝐹𝑝𝑟𝑖) with four other well-known metamodeling methods; Kriging, support
vector regression, neural network and multivariate adaptive regression. The performance of the five methods
is investigated by a comparative study, using 19 mathematical test functions, with five different degrees of
dimensionality and sampling size for each function. The performance is evaluated by root mean squared error
representing the accuracy, rank error representing the suitability of metamodels when coupled with evolutionary
optimization algorithms, training time representing the efficiency and variation of root mean squared error
representing the robustness. Furthermore, a rigorous statistical analysis of performance metrics is performed.
The results show that the proposed radial basis function with a priori bias achieved the best performance in most
of the experiments in terms of all three metrics. When considering the statistical analysis results, the proposed
approach again behaved the best, while Kriging was relatively as accurate and support vector regression was
almost as fast as 𝑅𝐵𝐹𝑝𝑟𝑖. The proposed RBF is proven to be the most suitable method in predicting the ranking
among pairs of solutions utilized in evolutionary algorithms. Finally, the comparison study is carried out on a
real-world engineering optimization problem.

1. Introduction

Nowadays, the role of simulation codes and software is inevitably
crucial in the initial stages of product design, to analyze the design
alternatives, especially in multidisciplinary design optimization (MDO).
A designer can create an optimized design with respect to multiple
objectives and several input variables, without creating a physical proto-
type. This will reduce the cost of the product development phase which
leads to designing products with higher efficiency and performance.
However, the computational cost of the complex and high fidelity
computer simulations is a drawback in simulation-based design opti-
mization. Although the computational power increases exponentially,
the complexity and accuracy of simulations and the related software is
expanding proportionately. One strategy is to approximate the complex
and expensive simulations with fast and accurate models often called
surrogate models or metamodels. In addition to predicting the response
of a computationally expensive simulation-based model, metamodels
develop a relation between the input variables and their corresponding
responses.
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Many metamodeling methods have been developed for metamodel-
based design optimization problems. Response surface methodology
(RSM) or polynomial regression (Box and Wilson, 1951), Kriging
(KG) (Sacks et al., 1989), radial basis functions (RBF) (Hardy, 1971),
support vector regression (SVR) (Vapnik et al., 1996) and neural
networks (NN) (Haykin, 1998) are some of the most well-known and
extensively studied methods. Several studies (Forrester and Keane,
2009; Simpson et al., 2001a, b; Wang and Shan, 2007) reviewed
different metamodeling methods and their applications. Several studies
comparing various surrogate models, in terms of accuracy, robustness,
efficiency and effectiveness, can be found in the literature. However,
in reviewing all the literature, one can conclude that there is no proof
of obvious dominance of one particular method over other techniques,
with regards to all the performance criteria.

A systematic comparison study of polynomial regression, KG, mul-
tivariate adaptive regression splines (MARS) and RBF under different
modeling criteria was initiated by Jin et al. (2001) on a set of 14
mathematical and engineering test problems. They considered three
modeling criteria, i.e., nonlinearity of problem (low and high), sample
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size (scarce, small and large), noise behavior (smooth and noisy),
and five evaluation measures, i.e., accuracy, robustness, efficiency,
transparency and conceptual simplicity. The results concluded that RBF
performance excelled in both large and small scale problems with a
high order of nonlinearity. Mullur and Messac (2006), compared their
proposed metamodeling method, extended radial basis function (E-
RBF), with three other approaches; RSM, RBF and KG. A number of mod-
eling criteria including problem dimension (low and high), sampling
technique (Latin hypercube, Hammersely, and Random) and sample size
(low, medium and high) were considered. They employed the accuracy
as the performance metric to identify the E-RBF as the superior method,
since the parameter setting was not needed in their proposed method.
Kim et al. (2009) performed a comparative study of four metamodeling
techniques, i.e., moving least square (MLS), KG, RBF and SVR, using six
mathematical functions, one modeling criterion i.e., problem dimension,
and one evaluation criterion, i.e., accuracy. Kriging and MLS showed
promising results in that study. In a research study (Zhao and Xue,
2010), quantitative measures considering accuracy, confidence, robust-
ness and efficiency were employed to compare multivariate polynomial,
RBF, KG and Bayesian NN. They also included three sample merits
which influence the metamodeling performance, such as sample size,
uniformity and noise, in their study. Another systematic comparison
study by Li et al. (2010) analyzed the strengths and weaknesses of NN,
RBF, SVR, KG, and MARS, in terms of three quantitative metrics, namely,
accuracy, robustness and efficiency, and three qualitative measures
including software availability, parameter tuning and interpretation of
the model. The study was based on four deterministic mathematical
simulation problems. The results concluded that SVR was the most
accurate and robust method. Backlund et al. (2012) studied the
scalability of RBF, KG and SVR by applying them on three distinct
test functions, i.e., kernel density function, Rosenbrock, and modified
Rosenbrock test function, with the dimension ranging from 15 to 50
independent variables. Kriging appeared to be the dominant method
in its ability to approximate accurately with fewer or an equivalent
number of training points. Furthermore, in Kriging parameter setting
was done automatically during the training process. RBF was found to
be the slowest in building the model with a large number of training
points, while SVR was the fastest in large scale multi-modal problems.
Han and Zheng (2012) compared RSM, MARS, RBF, Kriging and SVR,
in terms of robustness, as well as global and local accuracy. They
included several modeling criteria, such as complexity and nonlinearity
of problems and as well as scale and distribution of samples. Recently,
a study (Bandaru and Ng, 2015) compared ten different metamodels,
with respect to their accuracy and training time, by using a simple
stochastic simulation model. They considered two modeling criteria,
i.e., sample size and number of variables (problem dimension). RBF and
elastic net were the most accurate in predicting the response. However,
RBF, elastic net, random forest and boosted tree ensemble were the best
choices in using the metamodels in evolutionary algorithm optimization
methods. Díaz-Manríquez et al. (2017) compared four metamodeling
techniques: polynomial RSM, KG, RBF, and SVR by utilizing six scalable
test functions to evaluate their suitability for optimization algorithms
and low budget of computational time. They found RBF and SVR the
most efficient approach and selected RBF as the most robust and scalable
approach.

Recently, an approach for generating RBF with the bias known
a priori (𝑅𝐵𝐹𝑝𝑟𝑖) adjacent to the classic augmented RBF with the
bias known a posteriori (the RBF studied in several literature papers)
has been proposed (Amouzgar and Strömberg, 2016). A detailed and
comprehensive comparison study on the performance of the proposed
𝑅𝐵𝐹𝑝𝑟𝑖 with the classical augmented RBF (RBF with a posteriori bias,
𝑅𝐵𝐹𝑝𝑜𝑠) has also been conducted (Amouzgar and Strömberg, 2016;
Amouzgar et al., 2015). The factors that are present during the con-
struction of a metamodel (modeling criteria), including the dimension
of the problem, the type of radial basis functions used in RBF, the
sampling technique and sample size were considered, and their effects

were explored. The results demonstrated the promising potentials of
RBF with a priori bias, in addition to the simplicity and straightforward
use of the approach. Furthermore, the proposed method was applied on
an engineering application, i.e., multi-objective optimization of a disk
brake system (Amouzgar et al., 2013). However, there is no evidence
that the𝑅𝐵𝐹𝑝𝑟𝑖 has advantages over other metamodeling methods. Thus,
in this paper, we focus on investigating the performance of the proposed
approach in comparison to other well-known techniques. Kriging, SVR,
NN and MARS are the methods chosen for this purpose. In addition
to the traditional accuracy and computational efficiency metrics, we
put emphasis on the behavior of the methods when employed in
evolutionary algorithms (EA) by using a ranking metric.

This paper is structured by defining the a priori RBF approach and
the other four surrogate modeling methods in Section 2. Thereafter,
in Section 3 the comparison procedure, including the employed test
functions, replications and data sampling, parameter tuning as well as
the performance metrics, are described. The results are presented in
Section 4 by discussing the accuracy under dimension and sampling
size. The overall accuracy, suitability of the methods when coupled with
EA, computational efficiency and robustness are explained in the same
section. Furthermore, a statistical analysis of the performance metrics
is carried out in Section 4. This is followed by a comparison study on a
real-world engineering optimization problem in Section 5. Finally, the
conclusion of this study is summarized.

2. Metamodeling methods

In this section, the recently proposed RBF approach, and the other
four methods are described. There are a number of parameters in each
surrogate modeling method that requires to be predefined by the user.
These parameters have a noticeable impact on the accuracy of each
method. Hence, for the sake of a fair comparison the parameter setting
procedure described in Section 3.3 is followed for all metamodeling
methods.

2.1. Radial basis functions networks

Radial basis functions were first used by Hardy (1971) for multivari-
ate data interpolation. He proposed RBFs as approximation functions by
solving multi-quadratic equations of topography based on coordinate
data with interpolation. A radial basis function network of ingoing
variables 𝑥𝑖 collected in 𝒙 can be written as

𝑓 (𝒙) =
𝑁𝛷
∑

𝑖=1
𝛷𝑖(𝒙)𝛼𝑖 + 𝑏(𝒙), (1)

where 𝑓 = 𝑓 (𝒙) is the outgoing response of the network, 𝛷𝑖 = 𝛷𝑖(𝒙)
represents the radial basis functions, 𝑁𝛷 is the number of radial basis
functions, 𝛼𝑖 are weights and 𝑏 = 𝑏(𝒙) is a bias. The number of radial
basis functions is set equal to the number of ingoing variables.

Examples of popular radial basis functions are

Linear: 𝛷𝑖(𝑟) = 𝑟,

Cubic: 𝛷𝑖(𝑟) = 𝑟3,

Gaussian: 𝛷𝑖(𝑟) = 𝑒−𝜂𝑖𝑟
2
, (2)

Quadratic: 𝛷𝑖(𝑟) =
√

𝑟2 + 𝜂2𝑖 ,

where 𝜂𝑖 represents the shape parameters and

𝑟(𝒙) =
√

(𝒙 − 𝒄𝑖)𝑇 (𝒙 − 𝒄𝑖) (3)

is the radial distance. In physical interpretation, the shape parameters
control the width of the radial basis functions. A radial basis function
with a small value of 𝜂𝑖 gives a narrower effect on the surrounding
region. In other words, the nearby points of an unknown point will affect
the prediction of the response on that point. In this case, the risk of over-
fitting will occur, which means the sample points will influence only on
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