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A B S T R A C T

The study is devoted to the design of information granules of higher type (especially type-2) with the use
of the principle of justifiable granularity. The development of granules is realized in two key phases: first,
information granules of type-1 are formed and then they are extended to type-2 constructs. Following the
principle, information granules are designed by establishing a sound balance between their experimental
justification (legitimacy) and specificity (associated with their underlying semantics). The definitions of coverage
and specificity of type-2 information granules are revised to capture the essence of these constructs. Detailed
formulas are derived for several main categories of membership functions (namely, triangular, parabolic, and
square root) as well as intervals. The study delivers detailed results for interval-valued fuzzy sets described
by membership functions coming from the main classes listed above. Illustrative studies include synthetic data
exhibiting some probabilistic properties. The direct application of information granules of type-1 and type-2 is
demonstrated in the description and prediction of time series realized in the setting of information granules (with
the resulting models referred to as granular models of time series).

1. Introductory notes

Efficient ways of constructing information granules form a central
item on the agenda of Granular Computing (Angelov et al., 2010;
Cabrerizo et al., 2014; Pedrycz et al., 2012; Pedrycz, 2015; Pedrycz and
Kwak, 2007; Sánchez and Melin, 2014; Zhou and Dai, 2015) irrespec-
tively of the formalisms in which information granules are expressed
(Park et al., 2011; Pedrycz, 2002; Pedrycz et al., 2013; Pedrycz and
Izakian, 2014; Pedrycz and Vukovich, 2001; Xu and Li, 2016; Zhang
et al. 2017). In the realm of fuzzy sets, we have witnessed a wealth of
studies devoted to estimation techniques of membership functions (Chen
and Wang, 1999; Dempe and Ruziyeva, 2012; Wang, 1994). Some of
those exploit judgments resulting from human evaluations; say polling
or pairwise-based techniques (such as the Analytic Hierarchy Processes,
AHP) (Dopazo et al., 2014; Entani and Inuiguchi, 2015; Grobelny, 2016;
Lee and Li, 2011; Singh et al., 2017; Wang et al., 2006). A commonly
encountered category of methods revolves around a determination of
membership functions on a basis of numeric data; here fuzzy clustering
comes as a highly visible representative (Pedrycz and Rai, 2008).
Recently, type-2 fuzzy sets have been an area of intensive studies being
central to fuzzy modeling, classification reasoning and control (Aisbett
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et al., 2011; Cazarez-Castro et al., 2012; El-Nagar and El-Bardini, 2017;
Hu and Wang, 2014; Lou and Dong, 2012; Mendel et al., 2010; Pedrycz
and Kwak, 2006; Sun et al., 2015; Tao et al., 2012; Tavoosi et al., 2016;
Wu and Tan, 2006). There is no doubt that ways of estimation of type-
2 fuzzy sets is of paramount importance both conceptually as well as
for various applications. Surprisingly, the studies concentrated on the
systematic construction of fuzzy sets are very limited without general,
systematic and convincing guidelines. Typically, type-2 fuzzy sets are
established and optimized in conjunction with the design of fuzzy
models, so there is no standalone estimation mechanism. This approach
comes with two visible shortcomings. First, as type-2 fuzzy sets come
with a larger number of parameters in comparison with those required
to describe (characterize) type-1 fuzzy sets, the computing overhead
becomes substantially larger thus diminishing the usefulness of the
optimization mechanisms. Second, as being a part of the model, it is
very likely that the semantics of fuzzy sets might not be well articulated.
In conclusion, in light of these limitations, it becomes imperative to
establish a sound conceptual environment of designing of information
granules of higher type (Gacek and Pedrycz, 2015; Pedrycz et al., 2015).
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The principle of justifiable granularity (Pedrycz and Homenda,
2013) advocated in Granular Computing arises as a suitable alternative
worth pursuing here. In a nutshell, this principle emphasizes that
any information granule has to be both reflective of the experimental
evidence (numeric data) and preserve its semantics by keeping an
acceptable level of specificity.

It is to be noted that some initial ideas and related studies with
a strong application slant were reported by Liu et al. (2017); the
investigations presented here build upon the previous findings and offer
further expansion. In particular, we elaborate on the refinement of the
method to cope efficiently with one-dimensional data, especially their
weighted versions where individual data are weighted.

The ultimate objectives of this study are succinctly outlined as
follows.

First, we aim at the design of information granules of higher type,
especially type-2 with the aid of the principle of justifiable granularity.
The construction of information granules is realized in a stepwise
hierarchical manner meaning that the type-2 information granules are
built on a basis of the already constructed type-1 information granules
so that the semantic continuity of the developed granules is retained.

Second, we aim at demonstrating the usage of information granules
developed in this way in problems of description and prediction of time
series.

The study is structured as follows. In Section 2, we briefly recall
the principle of justifiable granularity, elaborate on its optimization
objectives (coverage and specificity) and a nature of the underlying
optimization process. Detailed computing is reported for selected cate-
gories of membership functions. In Section 3, the principle of justifiable
granularity is used to construct information granules of type-2 whereas
the design is carried out by expanding information granules of type-1
again formed with the aid of the same principle. In Section 4, the concept
and design of granular time series are discussed. Experimental studies
are reported in Section 5. Conclusions are presented in Section 6.

2. The principle of justifiable granularity — a brief overview

To make the exposure of the material self-contained, we briefly
recall the main conceptual background of the principle of justifiable
granularity. In essence, the principle delivers a way of building an
information granule on a basis of some experimental evidence, es-
pecially numeric data, so that the resulting information granule is
both experimentally justified and semantically sound. In general, by
experimental justification we mean that the granule embraces (covers)
the data and in this way legitimizes the existence of this granule. At the
same time we anticipate that the granule is semantically meaningful and
as such is kept specific enough.

The algorithm uses a set of weighted one-dimensional numeric data
coming in

𝑫𝑤 =
{

(𝑥1, 𝑤1), (𝑥2, 𝑤2),… , (𝑥𝑁 , 𝑤𝑁 )
}

(1)

where 𝑥𝑖’s are the data and 𝑤𝑖’s are the associated weights while 𝑥𝑖 ∈ 𝑹,
𝑤𝑖 ∈ [0, 1], 𝑖 = 1,2,. . . , N. If for each data, the corresponding weight is
unavailable, then the dataset reads as

𝑫 =
{

𝑥1, 𝑥2,… , 𝑥𝑁
}

(2)

where 𝑥𝑖 ∈ 𝑹, 𝑖 = 1,2,. . . , N.
Denote 𝑥𝑚𝑎𝑥 = max𝑖=1,2,…,𝑁 (𝑥𝑖) and 𝑥𝑚𝑖𝑛 = min𝑖=1,2,…,𝑁 (𝑥𝑖). With the

principle of justifiable granularity, the information granule A associated
with the dataset 𝑫𝑤 (or D) could be formed by maximizing the perfor-
mance function

𝑄 = 𝑐𝑜𝑣(𝐴) ∗ 𝑠𝑝(𝐴) (3)

where cov (.) and sp (.) are the coverage and specificity function,
respectively.

The confliction between these two criteria could guarantee the
existence of the maximum point, at the same time, it ensures that
the resulting granule could be simultaneously experimentally justifiable
and semantically meaningful. Given the membership function of A is
described as f, the parameters could be optimized by maximizing (3). To
be exact, if f is an unimodal function with finite support, then it could be
described by three parameters—the two end points (left bound (a) and
right bound (b)) and the modal value (m). According to the discussion
by Pedrycz and Wang (2016), this process is developed in the following
way:

(i) the determination of the modal value. In this study, the weighted
average is considered as the modal value

𝑚 =
∑𝑁

𝑖=1 𝑥𝑖𝑤𝑖
∑𝑁

𝑖=1 𝑤𝑖
, (4)

where (𝑥𝑖, 𝑤𝑖) ∈ 𝑫𝑤, 𝑖 = 1, 2,… , 𝑁 . If the dataset D is considered, then
the modal value reads as

𝑚 =
∑𝑁

𝑖=1 𝑥𝑖
𝑁

, (5)

where 𝑥𝑖 ∈ 𝑫, 𝑖 = 1, 2, . . . , N.
(ii) the optimization of bounds a and b. As these parameters could

be completed in the same way (by maximizing Q), we only discuss the
optimization of b here. Denote 𝑟𝑎𝑛𝑔𝑒 = (1 + 𝑟𝑥max

)𝑥max − 𝑚, (𝑟𝑥𝑚𝑎𝑥 =
sign(𝑥𝑚𝑎𝑥)). According to the method proposed by Pedrycz and Wang
(2016), the coverage and specificity functions read as:

𝑐𝑜𝑣(𝐴) =
∑

𝑘∶𝑚≤𝑥𝑘≤𝑥𝑚𝑎𝑥

min(𝑓 (𝑥𝑘), 𝑤𝑘) (6)

If the weights are unknown, then

𝑐𝑜𝑣(𝐴) =
∑

𝑘∶𝑚≤𝑥𝑘≤𝑥𝑚𝑎𝑥

𝑓 (𝑥𝑘) (7)

The specificity of A (with the membership function f )

𝑠𝑝(𝐴) = ∫

1

0
(1 −

𝑓−1(𝛼) − 𝑚
(1 + 𝑟𝑥𝑚𝑎𝑥 )𝑥𝑚𝑎𝑥 − 𝑚

)𝑑𝛼 = ∫

1

0
(1 −

𝑓−1(𝛼) − 𝑚
𝑟𝑎𝑛𝑔𝑒

)𝑑𝛼 (8)

Then with the performance index (3), we obtain

𝑏𝑜𝑝𝑡 = argmax𝑏𝑄(𝑏) (9)

In what follows, we present the details concerning three types of mem-
bership functions, namely linear, parabolic, and square root described
by the following membership functions:

linear 𝐿(𝑥, 𝑎, 𝑚, 𝑏) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 − 𝑎
𝑚 − 𝑎

, 𝑥 ∈ [𝑎, 𝑚]
𝑏 − 𝑥
𝑏 − 𝑚

, 𝑥 ∈ [𝑚, 𝑏]

0, otherwise

(10)

parabolic 𝑃 (𝑥, 𝑎, 𝑚, 𝑏) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 −
(𝑥 − 𝑚)2

(𝑎 − 𝑚)2
, 𝑥 ∈ [𝑎, 𝑚]

1 −
(𝑥 − 𝑚)2

(𝑏 − 𝑚)2
, 𝑥 ∈ [𝑚, 𝑏]

0, otherwise

(11)

square root 𝑆(𝑥, 𝑎, 𝑚, 𝑏) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

𝑥 − 𝑎
𝑚 − 𝑎

, 𝑥 ∈ [𝑎, 𝑚]
√

𝑏 − 𝑥
𝑏 − 𝑚

, 𝑥 ∈ [𝑚, 𝑏]

0, otherwise

(12)

We proceed with the detailed computing by involving the corresponding
membership functions. (See Fig. 1.)

For the linear membership function one has

𝑐𝑜𝑣(𝐴) =
∑

𝑚≤𝑥𝑘≤𝑥max

min(
𝑏 − 𝑥𝑘
𝑏 − 𝑚

,𝑤𝑘) (13)

𝑠𝑝(𝐴) = ∫

1

0
(1 −

𝑏 − (𝑏 − 𝑚)𝛼 − 𝑚
𝑟𝑎𝑛𝑔𝑒

)𝑑𝛼 = 1 − 𝑏 − 𝑚
2𝑟𝑎𝑛𝑔𝑒

(14)
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