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A B S T R A C T

Mini-batch algorithms, a well-studied, highly popular approach in stochastic optimization methods, are used by
practitioners because of their ability to accelerate training through better use of parallel processing power and
reduction of stochastic variance. However, mini-batch algorithms often employ either a diminishing step size
or a tuning step size by hand, which, in practice, can be time consuming. In this paper, we propose using the
improved Barzilai–Borwein (BB) method to automatically compute step sizes for the state of the art mini-batch
algorithm (mini-batch semi-stochastic gradient descent (mS2GD) method), which leads to a new algorithm:
mS2GD-RBB. We theoretically prove that mS2GD-RBB converges with a linear convergence rate for strongly
convex objective functions. To further validate the efficacy and scalability of the improved BB method, we
introduce it into another modern mini-batch algorithm, Accelerated Mini-Batch Prox SVRG (Acc-Prox-SVRG)
method. In a machine learning context, numerical experiments on three benchmark data sets indicate that the
proposed methods outperform some advanced stochastic optimization methods.

1. Introduction

In recent years, the variety and volume of data have grown rapidly.
Masses of data have led to increased interest in scalable optimization.
One of the most popular and practical methods, dating back to the 1951
seminal work of Robbins and Monro (1951), is the stochastic gradient
descent (SGD) method. The SGD method has significant theoretical and
empirical advantages in machine learning (Bekkerman et al., 2011;
Wang and Han, 2015), as well as in compressed sensing (Carpentier
and Munos, 2012; Xu and Minin, 2015), wireless sensor networks
(Lavanya and Udgata, 2011; Manjarres et al., 2013), matrix factorization
(Gemulla et al., 2011; Luo et al., 2012), and large scale natural language
processing (Gimpel et al., 2010).

In machine learning, the traditional SGD method (Zhang, 2004;
Shamir and Zhang, 2013) uses a single random example in each
iteration. The information obtained by computing the gradient of the
empirical risk function associated with this example is used to update
the predictor. This leads to a more fine-grained iterative process with
low computational cost per iteration, but concurrently introduces con-
siderable stochastic noise. The most obvious manifestation is that the
stochastic estimate of the gradient has a non-vanishing variance.

Typically, there have been two approaches to deal with the issue of
stochastic noise. (1) Use a decreasing step size (a.k.a learning rate) (Luo,
1991; Solodov, 1998; Zhang, 2004; Nemirovski et al., 2008; Shamir
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and Zhang, 2013). However, a diminishing step size, often leading to
slow convergence near the eventual limit, demands exhaustive exper-
imentation to determine how rapidly the step size must decrease in
order to prevent scenarios where the step size becomes too small when
the iterations are far from the eventual limit. (2) Use a mini-batching
technique (Shalev-Shwartz et al., 2007; Dekel et al., 2012; Cotter et
al., 2011; Konečnỳ et al., 2016). However, this technique leads to the
unwelcome side-effect of requiring more computations. As these two
cases indicate, traditional methods manage to decrease the variance in
the stochastic estimate, but that decrease comes at a cost.

Does a mini-batching strategy allow the stochastic optimization
methods to use a non-decreasing step size? Actually, mini-batch algo-
rithms often employ either a diminishing step size, or a tuning step
size by hand, which, in practice, can be time consuming. For instance,
under certain assumptions, some researchers (Duchi and Singer, 2009;
Nesterov, 2009; Xiao, 2010; Dekel et al., 2012; Lan, 2012; Byrd et
al., 2016) employ a diminishing step size in their proposed mini-
batch methods. Berahas et al. (2016) show that the Multi-Batch L-BFGS
method, with a constant step size, converges to within a neighborhood of
the optimal solution. They also point out that, according to the schedule
proposed by Robbins and Monro (1951), by using a step size sequence,
{𝜂𝑘} to zero, the Multi-Batch L-BFGS method converges to the optimal
solution. Li et al. (2014) introduce a technique based on an approximate
optimization of a conservatively regularized objective function within
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each mini-batch and establish convergence on a decreasing step size
for the proposed method. In addition, under certain assumptions, they
argue that the step size can develop into a constant step size. Ghadimi et
al. (2016) propose a randomized stochastic projected gradient (RSPG)
algorithm and analyze its convergence when it employs a non-increasing
step size or a non-decreasing step size. Recently, Konečnỳ et al. (2016)
proposed the mini-batch semi-stochastic gradient descent (mS2GD)
method, which uses a tuning constant step size.

As Roux et al. (2012) indicate, one vital issue regarding stochastic
algorithms, that has not been fully addressed in the literature, is how
to choose an appropriate step size while running the algorithms. In the
classical deterministic method, step size is often obtained by employing
line search techniques. However, line search is computationally pro-
hibitive in stochastic gradient methods, because it uses randomly chosen
gradient samples and does not allow for a strict sequence of decisions
that collapse the search space. Hence, a decreasing or best-tuned fixed
step size is often employed in stochastic optimization methods.

Inspired by recent works (Sopyła and Drozda, 2015; Tan et al., 2016;
Bordes et al., 2009; Byrd et al., 2016), instead of using a diminishing
step size or a tuning step size by hand in the mini-batch algorithms,
we equip the state of the art mini-batch algorithm, mS2GD , with
the ability to automatically compute step size by using the improved
Barzilai–Borwein (BB) method. Sopyła and Drozda (2015) incorporated
the BB method into the classic SGD algorithm for training the linear
SVM in its primal form. In Sopyła and Drozda (2015), the proposed
methods use a random sample to compute step size. However, such
methods perform worse than the existing methods. Moreover, in Sopyła
and Drozda (2015), theoretical justifications are not established. Tan
et al. (2016) proposed using the BB method to compute step size for
SGD and its variants: the stochastic variance reduced gradient (SVRG)
method, which leads to two algorithms: SGD-BB and SVRG-BB. Each
step size in SGD-BB and SVRG-BB is computed using the full gradient of
objective functions after a succession of stochastic iterations. SVRG-BB
and SGD-BB show promise because, while running, they automatically
generate the best step sizes. Indeed, the key idea behind the BB method is
motivated by the quasi-Newton property in deterministic optimization.
Bordes et al. (2009) and Byrd et al. (2016) used batch samples to
approximate quasi-Newton property in stochastic optimization and
indicated that their proposed methods show great promise for solving
the problems that arise in machine learning.

In our proposed method, to compute step size, the improved BB
method uses partial samples, randomly chosen from full samples. Com-
pared with SGD-BB and SVRG-BB, which update each step size after a
large number of stochastic steps, our proposed method updates the step
size in each stochastic iteration faster and performs well in practice.

The following are some recent works that discuss the choice of step
size in stochastic optimization methods: Cotter et al. (2011) specify a
novel, accelerated gradient strategy for mini-batch algorithms, where
step size, 𝜂𝑘, is scaled polynomially in iteration, 𝑘. Schmidt et al. (2015)
incorporate the standard backtracking line search into SAG to obtain
step size. Mahsereci and Hennig (2015) suggest performing line search
to obtain step size for a univariate optimization objective in the Gaussian
process.

The primary contributions of this paper are as follows:

∙ We equip the state of the art mini-batch algorithm, mS2GD,
which already has a fast rate, with the ability to automatically
compute step size by using the improved BB method, thereby, ob-
taining a new method: mS2GD-RBB. We prove that our mS2GD-
RBB method converges linearly for strongly convex objective
functions.

∙ To further validate the efficacy and scalability of the improved
BB method, we introduce it into another modern mini-batch algo-
rithm, the Accelerated Mini-Batch Prox SVRG (Acc-Prox-SVRG)
method, which leads to another new mini-batch algorithm: Acc-
Prox-SVRG-RBB.

∙ We conduct experiments, using the proposed methods, to solve
logistic regression in three benchmark data sets. Experimental
results show that our proposed method obtains a rapidly updated
step size sequence in each stochastic stage and achieves better
performance than the variants of some advanced SGD and batch
algorithms.

The remainder of this paper is organized as follows: Section 2 gives
the problem statement and background. Section 3 introduces the details
of our proposed method. Section 4 analyzes the convergence of our
proposed method. Section 5 presents our numerical results. Section 6
further discusses the efficacy and scalability of the improved BB method.
Section 7 concludes the paper.

2. Problem statement and background

Many problems of interest are often formulated as the following
optimization problem:

min
𝑤∈R𝑑

𝐹 (𝑤) = 1
𝑛

𝑛
∑

𝑖=1
𝑓𝑖(𝑤). (1)

Throughout this paper, we focus on such problems where both
each 𝑓𝑖 and 𝐹 (𝑤) have Lipschitz continuous derivatives, and, also, are
strongly convex. The canonical example is least squares, and in that case,
𝑓𝑖(𝑤) = 1

2 (𝑥
𝑇
𝑖 𝑤 − 𝑦𝑖)2 +

𝜆
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2
2, where 𝜆 is a regularization parameter.

Another widespread example is logistic regression, described by the
choice 𝑓𝑖(𝑤) = log(1 + exp[−𝑦𝑖𝑥𝑇𝑖 𝑤]) + 𝜆

2 ‖𝑤‖

2
2.

To solve the above optimization, the standard mini-batch SGD (Byrd
et al., 2012; Dekel et al., 2012) uses the following stochastic update
rule: at each iteration 𝑘, mini-batch 𝑆1 ⊂ {1,… , 𝑛} of size 𝑏1 is picked
at random and let

𝑤𝑘+1 = 𝑤𝑘 − 𝜂𝑘∇𝐹𝑆1
(𝑤𝑘), (2)

where 𝜂𝑘 > 0 is the step size in the 𝑘th iteration, and

∇𝐹𝑆1
(𝑤𝑘) =

1
𝑏1

∑

𝑖∈𝑆1

∇𝑓𝑖(𝑤𝑘), (3)

where ∇𝑓𝑖 is the gradient of the 𝑖th component function at 𝑤𝑘. If we set
mini-batch size 𝑏1 = 1, the iteration scheme Eq. (2) degrades into the
common SGD method (Bottou, 2010) that employs a single sample per
iteration, i.e., 𝑤𝑘+1 = 𝑤𝑘 − 𝜂𝑘∇𝑓𝑖(𝑤𝑘).

3. The algorithm

In this section, we introduce the random BB step size, followed by
the introduction of mS2GD, and then describe our mS2GD-RBB method,
which equips mS2GD with the random BB step size.

3.1. Random Barzilai–Borwein step size

The BB method, proposed by Barzilai and Borwein in Barzilai and
Borwein (1988), has been proven to be an efficient gradient method
for solving nonlinear optimization problems. In the BB method, some
quasi-Newton properties are used (Zheng and Zheng, 2016). Suppose
we want to solve the unconstrained minimization problem

min
𝑤∈R𝑛

𝑓 (𝑤), (4)

where 𝑓 is differentiable. A typical iteration of the quasi-Newton
methods (Dennis and More, 1974) for solving Eq. (4) is:

𝑤𝑘+1 = 𝑤𝑘 −𝐻−1
𝑘 ∇𝑓 (𝑤𝑘), (5)

where 𝐻𝑘 is an approximation of the Hessian matrix of 𝑓 at the current
iteration, 𝑤𝑘. The most important feature of 𝐻𝑘 is that it must satisfy
the so-called secant equation (Biglari and Solimanpur, 2013; Dai, 2013):
𝐻𝑘𝑠𝑘 = 𝑦𝑘, where 𝑠𝑘 = 𝑤𝑘 − 𝑤𝑘−1 and 𝑦𝑘 = ∇𝑓 (𝑤𝑘) − ∇𝑓 (𝑤𝑘−1). Now
approximate Hessian matrix 𝐻𝑘 by 𝐻𝑘 = (1∕𝜂𝑘)𝐼 with 𝜂𝑘 > 0 and
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