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A B S T R A C T

In this paper, we propose a unified framework that enables decisions fusion for applications dealing with multiple
heterogeneous Fault Detection and Diagnosis (FDD) methods. This framework, which is a discrete Bayesian
Network (BN), is generic and can encompass all FDD method, whether it requires an accurate model or historical
data. The main issue concerns the integration of different decisions emanating from individual FDD methods in
order to obtain more reliable results.

The methodology is based on a theoretical learning of the BN parameters, according to the FDD objectives
to be reached. The development leads to a multi-objective problem under constraints, which is solved with a
lexicographic approach.

The effectiveness of the proposed decision fusion approach is validated through the Tennessee Eastman
Process (TEP), which represents a challenging industrial benchmark. The application demonstrates the viability
of the approach and highlights its ability to ensure a significant improvement in FDD performances, by providing
a high fault detection rate, a small false alarm rate and an effective strategy for the resolution of conflicts among
different FDD methods.

1. Introduction

Nowadays, industrial systems are becoming more and more complex
and require new effective methods for their supervision. This latter
comprises a monitoring phase that aims to improve the system’s per-
formances and ensure a safety production for humans and materials.

The occurrence of a fault can lead to a critical failure which is defined
by Isermann (2006) as ‘‘a permanent interruption of a system’s ability
to perform a required function under specified operating conditions’’.
Detection and diagnosis of faults in a fast and correct manner is highly
important since it includes economic and safe operation of processes.
Indeed, undetected faults can have catastrophic impact on human life
and high-cost missions.

Therefore, faults need to be detected and diagnosed as soon as they
occur. In order to address such issue, there has been an increasing
interest in developing Fault Detection and Diagnosis (FDD) approaches.

In the literature, two major categories of approaches can be identi-
fied to achieve FDD: data-driven and model-based one (Venkatasubra-
manian et al., 2003b, c, a).

In the last years, some interesting research focused on the use of
combined model-based and data-driven approaches in order to improve
the monitoring performances and to overcome the limitations of indi-
vidual methods used separately (see the review in Tidriri et al. (2016)
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for more details). Furthermore, according to several research studies
(Venkatasubramanian et al., 2003b; Ding et al., 2009, 2011; Tidriri
et al., 2016), there is a need for integrating various complementary FDD
methods.

Among the earliest examples of hybrid approaches that attempted
to combine the features of several methods, one can cite (Mylaraswamy
and Venkatasubramanian, 1997). The objective was to benefit from the
quickness of a statistical classifier and qualitative trend analysis (QTA)
in detecting faults as well as the knowledge of Signed Digraph (SDG) for
the isolation of the causes.

SDG and QTA were also used in Maurya et al. (2007) to respectively
reduce the set of candidate faults and then to determine the true fault
case.

An original combination of Kalman Filter with Neural Network was
also developed in Siswantoro et al. (2016) to improve the classification
accuracy while the authors in Benkouider et al. (2009) focused on
statistical methods as well as the Extended Kalman Filter for faults
detection in semi-batch reactors.

Another research area related to hybrid approaches aimed at de-
veloping unified frameworks for the integration of different methods.
For instance, a strategy was proposed in Zhao et al. (2013) for chiller
experts. The framework consisted in a BN where useful information and
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List of abbreviations

FDD Fault Detection and Diagnosis
BN Bayesian Network
QTA Qualitative Trend Analysis
SDG Signed Digraph
NOC Normal Operating Conditions
FAR False Alarm Rate
FDR Fault Detection Rate
CPT Conditional Probability Table
HAC Hierarchical Ascendant Classification
PCA Principal Component Analysis
BNT BayesNet Toolbox
ARR Analytical Redundancy Relation
BG Bond Graph
DA Discriminant Analysis
TEP Tennessee Eastman Process
SNN Simple Neural Network
SVM Support Vector Machine

expert knowledge were integrated. However, it appears that setting the
BN parameters is a difficult task and represents the major drawback of
this strategy.

The same difficulties have been faced by the authors in Atoui
et al. (2015a). Basically, they combined the 𝑇 2 statistic and a residual
obtained from a model-based method, under the conditional Gaussian
BN. This framework was tested on a water heater process and proved a
better performance compared to the methods used separately.

Within this context, BN was also combined to the BG method
in Zaidi et al. (2010) and tested on a controlled two-tank system.
Additional information about the reliability have been used to improve
the performances, especially with regards to unknown and identical
signatures of failures.

However, combining different FDD methods is bound to generate
conflicts in results. In order to address this issue, several decision
fusion strategies has been used such as utility-based and evidence-based
strategies. Utility-based methods are very simple to implement but they
do not exploit any prior knowledge about the method’s performances,
unlike evidence-based methods.

Detailed reviews and comparative studies of utility-based and
evidence-based strategies can be found in Rahman et al. (2002), Ghosh
et al. (2011) and Zhang and Ge (2015).

Despite the significant number of publications related to imple-
mentations of hybrid approaches and decision fusion strategies (My-
laraswamy and Venkatasubramanian, 1997; Maurya et al., 2007;
Siswantoro et al., 2016; Benkouider et al., 2012; Atoui et al., 2015a;
Schubert et al., 2011; Ghosh et al., 2011; Kacprzyk, 2008; Guy et al.,
2013), the theoretical basis is still missing and achieved improvements
are inconsistent or dedicated to particular applications.

In this work, we seek to overcome this theoretical and generic lack
by developing a novel unified and theoretical framework for hybrid
approaches, as encouraged by the state of the art (Tidriri et al., 2016;
Ding et al., 2005). The proposed framework is a BN that enables
fusing the results of multiple heterogeneous FDD methods in order to
strengthen correct decisions while invalidating incorrect ones. A generic
methodology is hence developed in order to match the detection and
diagnosis objectives, to provide a complete fault coverage and to ensure
notable improvements to the overall monitoring performances.

Accordingly, the rest of the paper is organized as follows. In Sec-
tion 2, a general formulation of the FDD problem and objectives are
introduced. In Section 3, the proposed unified framework and the FDD
methodology are detailed. Section 4 shows the effectiveness of our
approach through the TEP, which is extensively used as a realistic
benchmark to test and compare different FDD strategies. Finally, the last

section highlights the interest of the proposed approach and concludes
the paper.

2. Problem formulation and FDD objectives

In this section, the general context of our methodology is presented
and the problem formulation is provided. Then, the FDD objectives to
meet in order to improve the overall performances of the system are
discussed.

2.1. Context for the proposed methodology

The main interest in combining FDD methods lies in the fact that
various methods can usually complement each other, leading to an
improvement of the monitoring performances. Indeed, detection and
diagnosis errors can be greatly reduced especially when the individual
methods present varying performances for different faults.

Hence, this work focuses particularly on situations where individual
methods provide different FDD performances and/or comparable ones.
Basically, it appears that for few industrial applications, every single
FDD method that can be used provides a framework that enables to
detect the occurrence of a specific set of faults. From one FDD method
to another, these faults can be identical or totally different. Therefore,
there is a need for developing a decision-making tool that enables the
fusion of different decisions in order to obtain a complete faults coverage
and a reliable decision to be displayed to the operator.

2.2. Problem formulation

In this article, the problem of decision fusion of individual FDD
methods is addressed.

First, a set of faults 𝑆 = {𝑠1,… , 𝑠𝑛} that may occur in the system
is defined. These faults can affect the actuators, the sensors or the
plant and may have different time-varying profiles. Second, a set of
classes 𝐶 = {𝑁𝑂𝐶, 𝑠1,… , 𝑠𝑛} that represent all the states of the system
is introduced. Indeed, a system can be either in Normal Operating
Conditions 𝑁𝑂𝐶 (i.e. fault free state), or in a faulty state 𝑆 = {𝑠1,… , 𝑠𝑛}.

Hence, the following definition is given for a decision of a FDD
method.

Definition 1 (Decision). A decision 𝑑 ⊆ 𝐶 is defined as the class or the
set of classes chosen by the FDD method as the state of the system.

For generalization, let us assume that the developed approach con-
siders two FDD methods to be integrated. Hence, two types of decisions
have to be defined: (i) 𝑑1 given by the first FDD method and (ii) 𝑑2 given
by the second one. The set of all decisions are respectively denoted as
𝐷1 and 𝐷2.

In the case of hybrid approaches, 𝑑1 and 𝑑2 can represent respectively
the decisions of a model-based and a data-driven method.

In order to evaluate the performance of FDD methods, two generally
used indices, i.e. false alarm rate (FAR) and fault detection rate (FDR),
also known as overall recognition rate, are considered in this work and
defined in the following.

Definition 2 (False Alarm Rate (FAR)). The FAR is the percentage of
normal samples identified as fault during the NOC of the system. It is
computed as:

𝐹𝐴𝑅 =
No. of normal samples identified as fault

Total No. of normal samples ∗ 100. (1)

Definition 3 (Fault Detection Rate (FDR)). The FDR is the percentage of
samples correctly diagnosed. This includes diagnosing the correct faults
in faulty scenarios, and not diagnosing any faults in NOC. It is computed
as:

𝐹𝐷𝑅 =
No. of samples correctly diagnosed

Total No. of samples ∗ 100. (2)
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