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A B S T R A C T

Multi-agent applications that include teams of mobile sensing agents are challenging since they are inherently
dynamic and a single movement of a mobile sensor can change the problem that the entire team is facing. A
variation of the Distributed Constraint Optimization model for Mobile Sensor Teams (DCOP_MST) was previously
adjusted to represent such problems along with local search algorithms that were enhanced with exploration
methods. This paper considers the use of the Max-sum algorithm for solving problems of deploying a mobile
sensor team in an unknown environment to track and monitor points of interest (targets), represented by the
DCOP_MST model.

The DCOP_MST model allows the representation of different functions for aggregating the joint coverage
of targets by multiple sensors. The use of different functions has a dramatic effect on the complexity of the
Max-sum algorithm. When using cardinality functions, Max-sum can be performed efficiently regardless of the
arity of constraints. When Max-sum is used to solve applications that require other (more complex) aggregation
functions, its complexity is exponential in the arity of the constraints and thus, its usefulness is limited.

In this paper we investigate the performance of the Max-sum algorithm on two implementations of the
DCOP_MST model. Each implementation considers a different joint credibility function for determining the
coverage for each target, with respect to the locations and the credibility of agents. In the first, the coverage
is calculated according to the number of agents that are located within sensing range from the target. This
function can be calculated efficiently. The second takes the angle between the lines of sight of different agents
to a target into consideration. The larger the difference in the angle between the lines of sight, the higher the
coverage efficiency.

We analyze the challenges in adjusting the Max-sum algorithm in both scenarios and propose enhancements
of the algorithm that make it more efficient. We provide empirical evidence of the advantages resulting from
these enhancements in comparison to the naive algorithm.

1. Introduction

As development of autonomous robots rapidly expands, alongside
sensor, actuation and communication technology, it is likely that soon,
teams of mobile sensing agents would be commonly used to perform
various collective tasks. Some challenging applications of Mobile Sensor
Teams (MSTs) include tracking and monitoring points of interest in
an unknown environment (Lesser et al., 2012; Zivan et al., 2015),
measuring a scalar field (La and Sheng, 2013), maintaining wireless
sensor networks (Hermelin et al., 2017), and creating a communication
network (Jain et al., 2009). In other applications, MST’s form rescue
teams operating in disaster areas (Macarthur et al., 2011; Pujol-Gonzalez
et al., 2013). Examples of underwater data collection using autonomous
underwater robotic vehicles include monitoring of algal blooms (Smith
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et al., 2010), seismic activity (Nooner and Chadwick, 2009), measure-
ment of ocean currents (Hollinger et al., 2016) and schools of robotic
fish monitoring pollution in waterways (Hu et al., 2011). Moreover,
the advancement of the internet-of-things (IoT) technology provides
the necessary infrastructure for mobile sensors to become smart agents,
which can share information and coordinate their actions (Rust et al.,
2016). In such a setting, where a large number of mobile agents need to
cooperate, it is important to have efficient protocols for communication,
task allocation, deployment and decision-making.

MSTs are inherently decentralized as each agent has exclusive
control of its own location and has limited computational and commu-
nication resources. As the number of agents increases, these limitations
necessitate that computation and communication be distributed over the
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entire team to avoid a single point of failure, communication bottlenecks
or unacceptably long delays.

Modeling distributed multi agent systems is often done using the
Distributed Constraint Optimization (DCOP) framework (Maheswaran
et al., 2004b; Meisels, 2008; Yeoh et al., 2008; Le et al., 2016) (Sec-
tion 3.1 offers a formal description of the framework).

Recently, Zivan et al. (2015) proposed a model and corresponding
local search algorithms for representing and solving such scenarios,
particularly focusing on teams of mobile sensing agents that need to
select a deployment for the sensors in order to cover a partially unknown
environment—DCOP_MST. The DCOP_MST model is an extension of
the DCOP model that allows agents to adjust their location in order
to adapt to dynamically changing environments. The local distributed
search algorithms that were proposed for solving DCOP_MST, were
adjustments of standard local search techniques (such as Maximum Gain
Message (MGM) Maheswaran et al., 2004a and Distributed Stochastic
Algorithm (DSA) Zhang et al., 2005) to the model, enhanced by
specifically-designed exploration methods (Zivan et al., 2015). The need
for reasonable response times drives agent to only consider alternative
positions in their local environment. This locality in turn, generates the
need to enhance the algorithms with exploration methods that enable
agents to consider suboptimal positions in order to escape local minima
and find targets outside of their local environment.

The Max-sum algorithm has been the subject of intensive study in
DCOP problems and has been applied to many realistic applications
including mobile sensor networks (Stranders et al., 2009; Vargo et al.,
2013), supply chain management (Chli and Winsper, 2015) and teams
of rescue agents (Ramchurn et al., 2010). Max-sum is an incomplete
inference algorithm, which propagates costs/utilities, unlike incomplete
local search algorithms in which agents share their selected assignments
with their neighbors (Zivan et al., 2014). While on random synthetic
problems, Max-sum is outperformed by local search algorithms, in many
realistic scenarios, such as sensor network scenarios, Max-sum was
found to have an advantage (Farinelli et al., 2008, 2013; Stranders et al.,
2009; Voice et al., 2010). This motivates the efforts to apply Max-sum
to DCOP_MST and evaluate its performance in realistic mobile sensor
scenarios, which can be modeled by DCOP_MST.

The need for exploration can be reduced by extending the local
environments of the agents and allowing them to consider more distant
tasks/targets. However, this would increase the number of agents that
can be assigned to each task. Since the computation performed by Max-
sum is exponential in the number of agents involved in a constraint,
constraints that involve many agents (k-ary) represent a computational
bottleneck. While a number of techniques were proposed to reduce such
complexity (Stranders et al., 2009; Macarthur et al., 2011), they are not
applicable to every implementation.

Thus, in this work we apply the Max-sum algorithm to two im-
plementations of the DCOP_MST model. Each implementation uses a
different function for calculating the joint coverage of a target by the
agents that are located in sensing range from it. The first (𝐹𝑆𝑢𝑚), simply
adds the credibilities of agents in range. Thus, the optimal joint coverage
for this target can be calculated efficiently (Tarlow et al., 2010; Pujol-
Gonzalez et al., 2013). The second, (𝐹𝑃𝑃 ), takes into consideration the
angle between the line of sights of agents to the target, assuming that
sensing a target from the same angle produces the same information
and the larger the difference in the angle between their lines of sight,
the more unique information each sensor can provide. This assumption
is most common when vision sensors (e.g., cameras) are used (Vazquez
et al., 2003; Erdem and Sclaroff, 2006). For this scenario, targets
computation is exponential in the arity of the constraint (number of
neighboring agents) as in the general case.

We contribute to the state of the art first by applying the Max-
sum algorithm to a complex scenario in which it encounters symmetry
problems and in which standard runtime enhancement techniques fail
to work. We then offer novel solutions to both the symmetry problem
and to the runtime enhancement.

The application of Max-sum to 𝐹𝑃𝑃 necessitates solving the symme-
try problem generated by the exploitive nature of Max-sum. We solve
this problem by suggesting an efficient local version of the Ordered
Value Propagation technique (Zivan and Peled, 2012).

Next, we propose a novel exploration method, specifically designed
for Max-sum, based on meta-reasoning: agents select for each target a
subset of the sensors that can be effective for covering it. The size of the
subset is equal to the maximal number of sensors required for covering
the target. This target is ignored in the process for selecting the locations
of other sensors. As a result, such sensors that were not selected for
coverage of targets are free to explore for new targets.

The proposed function meta reasoning method (FMR) breaks the
relation between the size of the local environment of agents and the
arity of the constraints, i.e., the arity of the constraint is not defined by
the number of sensors that can be within sensing range of a target 𝑡 after
the next assignment selection (i.e., the ‘‘neighbors’’ of 𝑡) but rather by the
required number of sensors for covering 𝑡. Thus, even if we enlarge the
local environment of agents and the number of neighbors of 𝑡 grows, the
number of neighbors for 𝑡 in the reconstructed factor-graph is bounded
from above by the number of sensors required for covering it. Our
empirical study reveals that a greedy heuristic for selecting the subset of
the neighboring sensors for coverage improves the performance of the
method further.

We empirically compare the proposed exploration methods and the
adjusted iterative version of standard Max-sum to existing local search
methods for DCOP_MST.

Our results demonstrate that standard Max-sum is superior to stan-
dard local search algorithms (in terms of iterations to reach convergence
and solution quality) but it is outperformed by local search algorithms
that include exploration methods. However, when Max-sum is combined
with any of the exploration methods described, it outperforms the
explorative local search algorithms, and the combination of Max-sum
with FMR dominates all other approaches. Moreover, we demonstrate
that an increase in the size of the local environments of agents does
not affect the runtime required for completing an iteration for agents
performing the FMR method while the runtime required for agents to
complete an iteration in all other methods based on Max-sum grows
exponentially.

The rest of the paper is organized as follows: Section 2 discusses
previous work, while Section 3 describes the DCOP_MST model and the
existing leading solution algorithms. Section 4 presents the adjustment
of Max-sum for solving DCOP_MSTs (i.e., Max-sum_MST). Section 4.5
explains the symmetry problem in Max-sum and our proposed solution.
Section 4.6 describes the exploration methods we propose. Finally,
Section 5 describes our experimental study and Section 6 concludes the
paper.

2. Related work

The problem of coordinating distributed sensor networks has been
solved using a wide range of techniques ranging from bio-inspired
behaviors (Xiang and Lee, 2008; Leitão et al., 2012; Das et al.,
2014) and machine learning techniques (Wang and de Silva, 2008),
to economic and game-theoretic mechanisms (Hsieh, 2009). Other
modeling approaches, geared towards software agents, utilize agent-
based technology (Aiello et al., 2009; Fortino and Galzarano, 2013).
A number of papers proposed the DCOP model for representing and
solving coordination problems related to sensor networks (Farinelli
et al., 2013; Nguyen et al., 2014) and mobile sensor networks (Stranders
et al., 2009).

DCOP is a general model for distributed problem solving that has
been widely used to coordinate the activities of cooperative agents (Ma-
heswaran et al., 2004a; Zhang et al., 2005; Rogers et al., 2011; Li et al.,
2016). The DCOP literature offers a rich wealth of solution techniques,
ranging from complete approaches (Modi et al., 2005), which are
guaranteed to find the optimal solution, to heuristic methods (Zhang
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