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ARTICLE INFO ABSTRACT

Keywords: Researches demonstrate that profiles (row vectors of coding coefficient matrix) can be used to select and update

Dictionary learning atoms. However, the profiles are seldom used to construct discriminative terms in dictionary learning. In this

Sparse coding paper, we propose an interactively constrained discriminative dictionary learning (IC-DDL) algorithm for image

Image classification classification. First, we give a Lemma of the relation between the profiles and atoms. That is, similar profiles can
lead to the corresponding atoms which are also similar, and vice verse. Then, we construct a profile constrained
term by using the profiles and Laplacian graph of the atoms. Third, we explore the atoms and the Laplacian graph
of the profiles to construct an atom constrained term. By alternatively and interactively updating the profiles
and atoms, the two proposed constrained terms not only can inherit the structure information of the training
samples, but also preserve the structure information of the atoms and profiles simultaneously. Moreover, the
atom constrained model also can minimize the incoherence of the atoms. Experiment results demonstrate that
the IC-DDL algorithm can achieve better performance than some state-of-the-art dictionary learning algorithms
on the six image databases.

1. Introduction the locality information of the coding coefficients and atoms is also ig-
nored. Then, they may degrade the discriminative ability of the learned

Sparse representation has achieved excellent performance in many dictionary. Recently, the profiles (row vectors of coding coefficient
domains (Wright et al., 2009; Wang and Guo, 2017; Banerjee and Chat- matrix) have been used to select and update atoms, and to design
terjee, 2017). However, researches demonstrate that dictionary learning the discriminative terms in the dictionary learning algorithms (Lu et

al., 2014a; Sadeghi et al., 2014; Li and Zhang 2016; Li et al., 2017).
Especially, in Li et al. (2017), Li et al. proposed a locality constrained
and label embedding dictionary learning (LCLE-DL) by using the profiles
and atoms to inherit the locality characteristics of the training samples.
However, the LCLE-DL algorithm ignored the structure information
of the coding coefficients and the incoherence characteristics of the
atoms. Although discriminative terms based on the coding coefficients
(column vectors of coding coefficient matrix) have been well studied,
how to use the profiles to construct discriminative terms for enhancing
discrimination of the learned dictionary is still in its infant stage.

To this end, we propose an interactively constrained discriminative
dictionary learning (IC-DDL) algorithm by using the profiles and atoms.

model usually has a better signal reconstruction and classification
performance than directly utilizes original training samples (Zhu and
Shao, 2014; Huang et al., 2017; Chen and Su, 2017). Therefore, many
dictionary learning algorithms have been proposed for classification
tasks (Shu et al., 2018; Vu and Monga, 2017; Wang et al., 2017; Akhtar
et al., 2016; Banerjee and Chatterjee, 2016).

In the sparse coding and dictionary learning models, the locality
information is more essential than the sparsity (Yu et al., 2009).
Therefore, many dictionary learning algorithms have been proposed by
using the locality information of the training samples to construct the
discriminative terms (Wang et al., 2010; Zheng et al., 2011; Haghiri

et al., 2015; Liu et al.,, 2015). However, since the training samples The IC-DDL algorithm not only can preserve the locality information
often include noise and outliers in practical applications, they may not of the coding coefficients and the atoms, but also inherits the local-
obtain the true locality information of the training samples. Moreover, ity information of the training samples. The basic idea of IC-DDL is
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illustrated in Fig. 1. We first use the K-SVD algorithm to initialize a
dictionary, which can inherit the geometric structure of the training
samples (Aharon et al., 2006; Zhu and Lafferty, 2005; Shaban et al.,
2013). Then, we construct a Laplacian graph of the atoms, and use the
profiles to measure the similarity of the corresponding atoms. In this
way, we can construct the profile constraint term by using the profiles
and the learned Laplacian graph of the atoms. The profile constraint
term not only inherits the locality information of the training samples,
but also preserves the locality information of the atoms immediately
surrounding them. Similarly, we construct an atom constraint term by
using the atoms and the learned Laplacian graph of the profiles. The
atom constraint term not only can preserve the locality information
of the coding coefficients, but also can minimize the incoherence of
the atoms. Since there is a one-to-one correspondence between the
profile and atom, the atom constrained and profile constrained terms
can be alternatively and interactively updated in dictionary learning.
Moreover, since the data is more likely to reside on a low-dimensional
sub-manifold embedded in the high-dimensional ambient space, the
geometrical information of the data is important for discrimination
(Zheng et al., 2011). Therefore, by preserving the locality characteristics
of the atoms and coding coefficients, the discriminative ability of the
learned dictionary can be improved in the proposed IC-DDL algorithm.

In the testing stage, we use the orthogonal matching pursuit (OMP)
(Tropp and Gilbert, 2007) algorithm to calculate the sparse representa-
tion coefficients with the learned dictionary. And then, we explore the
coding coefficients and the label of the training samples to calculate a
classifier parameter. By combining the classifier parameter and sparse
representation coefficients, we can obtain the label of the testing
samples.

The main contributions of this work are summarized as follows:

(1) A lemma about the relation between the profiles and atoms is
given, that is, similar profiles can lead to the corresponding atoms which
are also similar, and vice verse. The relation between the profiles and
atoms can provide a new insight to design discriminative terms.

(2) The atom constrained term is constructed by using the Laplacian
graph of the profiles and atoms. It not only can preserve the locality
information of the coding coefficients, but also minimizes the inco-
herence of the atoms. Both of them are important for enhancing the
discrimination ability of the learned dictionary.

(3) The two constrained terms are constructed by using the profiles
and atoms, which can be adaptively and interactively updated in dictio-
nary learning. In this way, the discriminative information can be mutual
transformed between the atom constrained and profile constrained
terms.

The rest of this paper is organized as follows. The related works
are presented in Section 2. The definition of the profiles is given
in Section 3. Section 4 introduces the proposed dictionary learning
algorithm. Section 5 presents the optimization of the proposed algo-
rithm. Relationships between the proposed algorithm and comparison
algorithms are discussed in Section 6. The experimental results and
analysis are included in Section 7. Some conclusions are drawn in
Section 8.

2. Related work

For discriminative dictionary learning algorithms, the label infor-
mation usually plays an important role for improving classification
performance. Therefore, the labels of the training samples or/and atoms
are usually used to construct the discriminative terms. In Zhang and
Li (2010), in order to utilize the label information of the training
samples, Zhang et al. proposed the D-KSVD algorithm by constructing
the classification error term and learning the linear classifier simulta-
neously. Furthermore, the label consistence K-SVD dictionary learning
algorithm (LC-KSVD) is proposed, which explored both the label infor-
mation of the atoms and training samples to design the discriminative
terms (Jiang et al., 2013). In Zhang et al. (2016), based on the LC-
KSVD algorithm, Zhang et al. imposed the embedding learning on the
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dictionary learning model to enhance the discrimination ability of the
coding coefficients. Moreover, in Cai et al. (2014), Cai et al. explored
the labels of the training samples to construct an adaptive weighted
model to constrain the coding coefficients, and presented a support
vector guided dictionary learning (SVGDL) algorithm for classification.
However, those algorithms all ignore the incoherent properties of the
atoms, and it may enhance the redundancy of the learned dictionary.
In Yang et al. (2014), Yang et al. proposed a discrimination dictionary
learning algorithm by simultaneously using the Fisher criterion of the
coding coefficients and imposing the self-incoherent constraints on each
dictionary. In Wang and Kong (2014), Wang and Kong also used the
incoherence characteristics of the atoms to construct the discriminative
term. However, the above algorithms all ignored the locality informa-
tion of the training samples, and it may degrade the discrimination of the
learned dictionary. The reason is that the locality information is more
essential than the sparsity in sparse coding and dictionary learning (Yu
et al., 2009).

In Wang et al. (2010), in order to exploit the locality information,
Wang et al. explored the distances between the atoms and the training
samples to constrain the coding coefficients. In Liu et al. (2015), Liu et al.
proposed a kernel collaborative representation classification algorithm
by using the locality-constrained dictionary. Although the structure
properties can be preserved by an ensemble of the representative
points in the above algorithms, the structure information immediately
surrounding the representative points is discarded. In order to address
this problem, in Li et al. (2015), Li et al. proposed the locality-
constrained affine subspace coding by using an ensemble of subspaces
attached to the representative points. In Lu et al. (2014b), Lu et al.
designed the ACDL algorithm by using the k-means clusters method
and the manifold learning method. However, in the ACDL algorithm,
the structure information of the atoms and coding coefficients are
constructed by directing utilizing the training samples, which is the
structure information of the training samples in essence. Moreover,
the ACDL algorithm also ignored the geometric structure of the atoms
immediately surrounding them, it played an important role in sparse
coding and dictionary learning (Li et al., 2015). Recently, in Li et al.
(2017), Li et al. proposed the LCLE-DL algorithm by using the profiles
and the atoms. The LCLE-DL algorithm not only can inherit the structure
information of the training samples, but preserve the structure informa-
tion of the atoms immediately surrounding them. However, the LCLE-DL
algorithm ignored the structure information of the coding coefficients
and the incoherence characteristics of the atoms. In order to address
this problem, we propose an interactively constrained discriminative
dictionary learning algorithm by using the profiles and atoms. The
IC-DDL algorithm not only can inherit the structure information of
the training samples, but also preserve the geometric structure of the
atoms and coding coefficients. Moreover, The IC-DDL algorithm also
can minimize the incoherence of the leaned dictionary. All of them are
benefit to improve the discriminative ability of the learned dictionary.
Therefore, the IC-DDL algorithm can achieve better performance than
some discriminative dictionary learning algorithms on the four face
databases and two image databases.

3. Definition of the profiles

In general, the basic framework of dictionary learning is as follows.

min Y = DX +&f (X eh)

where Y = [yl,yz, ,yn] € R™ is the training sample set and y;
is the ith training sample. D = [d).d,,....d,] € R™ is the learned
dictionary and d; is the ith atom. X = [x},x;,....x,] € R is the
coding coefficients and x; = [x};, Xy, ..., X " is the coding coefficient
vector of training sample y;,. ¢ is the regularization parameter and f (.)
is the sparsity function of the coding coefficients. In ideal conditions,
Eq. (1) can be rewritten as follows (Lu et al., 2014a).
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