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A B S T R A C T

In this study, a centroid-based type-2 fuzzy-probabilistic programming (CT2FP) approach is developed for
supporting conjunctive use of surface water and groundwater under multiple uncertainties. CT2FP can not only
tackle uncertainties expressed as type-2 fuzzy sets (in both objective function and constraints) but also address
complexity with characteristic of randomness and two-layer fuzziness (i.e., type-2 fuzzy random variables).
Solution method based on 𝛼-plane theory, enhanced Karnik–Mendel algorithm (EKM) and interactive algorithm
are proposed to transform type-2 fuzzy-probabilistic constraints into their deterministic equivalents. A case study
in Zhangweinan River Basin (China) is used to demonstrate the applicability of the proposed approach. Scenarios
associated with different constraint-violation risk levels are examined to generate applicable cropping patterns
and water-allocation schemes. The amount of groundwater used for irrigation can be determined (i.e., more than
[462.84, 495.78] × 106 m3 in dry season and no more than [470.83, 537.19] × 106 m3 in wet season, respectively)
to address the conflict between food security and ecological protection. The relationship among crop area, water
allocation, and economic benefit can be reflected to enhance the agricultural sustainable development for the
study basin.

1. Introduction

In recent years, water scarcity challenges have been exacerbated by
rapid urbanization, fast industrialization, accelerated population growth
and ongoing climate change. As the most water-intensive industry,
agriculture accounts for 70% of the total fresh water consumption and
plays an important role in world food production (Al-Ansari et al.,
2015). Groundwater, a vital water resource, has been exploited to fulfil
crop water demand and maximize net annual returns, especially in
the regions with inadequate available surface water supplies. Excessive
groundwater pumping has induced serious environmental problems,
including the reduction of streamflow, the depletion of groundwater,
and the degradation of ecosystem. Conjunctive use of surface water and
groundwater, defined as the allocation of surface water and ground-
water to achieve one or more objectives while certain constraints are
satisfied, is vital to alleviate water scarcity and ensure food security
(Safavi et al., 2010). Moreover, precise data is hard to be obtained due to
temporal and spatial variations in agriculture system; instead, uncertain-
ties are ubiquitous in each system component (e.g., agricultural water
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demand and irrigation benefit), creating complexities in conjunctive
water management. Therefore, inexact optimization techniques are
desired to assist conjunctive water management under uncertainty.

Previously, a number of optimization techniques were conducted for
supporting conjunctive water management under uncertainty (Sethi et
al., 2006; Kerachian et al., 2010; Morankar et al., 2013; Joodavi et al.,
2015; Mohammadi et al., 2016; Pastori et al., 2017; Li et al., 2017;
Roy and Bhaumik, 2018). Fuzzy mathematical programming (FMP) is
an attractive tool to handle epistemic uncertainty presented as type-1
fuzzy sets (Yu et al., 2017). However, the membership grades of type-
1 fuzzy sets may be uncertain due to a number of economic, social,
environmental, technical and political factors and it is not reasonable to
use an accurate membership function for reflecting such uncertainties.
For example, the values of parameters (i.e., cost for delivering water)
are usually subjectively estimated by decision makers and stakeholders,
and thus merely be obtained as imprecise information, such as fuzzy
sets. At the same time, the estimated values from one decision maker
may change under different conditions; consequently, the membership
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grades of fuzzy sets are uncertain, leading to two-layer fuzziness (type-2
fuzzy sets, T2FS).

Type reduction methods were proposed to address the above de-
ficiencies of FMP by introducing the concept of T2FS in fuzzy logic
systems (Starczewski, 2014; Cervantes and Castillo, 2015; Sanchez et
al., 2015a; Castillo et al., 2016b; Ngo and Shin, 2016; El-Nagar and
El-Bardini, 2017). Yeh et al. (2011) reconstructed the starting values of
enhanced Karnik–Mendel algorithm to compute the centroid of interval
type-2 fuzzy sets; as a result, unnecessary computations and compar-
isons were avoided, and type reduction could be done faster. Sanchez et
al. (2015b) achieved fuzzy control through using the concept of general-
ized type-2 fuzzy logic system in a generalized type-2 fuzzy controller;
results indicated that generalized type-2 fuzzy controllers outperform
their type-1 and interval type-2 fuzzy controller counterparts in the
presence of external perturbations. Golsefid et al. (2016) proposed
a multi-central general type-2 fuzzy clustering approach for pattern
recognitions, where the centers of clusters were considered as a set of
points and the degree of belonging to the clusters was described as a
general type-2 fuzzy set. Castillo et al. (2016a) presented a comparative
study of type-2 fuzzy logic systems with respect to interval type-2 and
type-1 fuzzy logic systems, where the theory of alpha planes and the
Karnik–Mendel algorithm were used for defuzzification. Kayacan et al.
(2018) tested the prediction capability of elliptic membership functions
using interval type-2 fuzzy logic systems; results indicated that elliptic
membership functions have comparable prediction results compared to
Gaussian and triangular membership functions.

Among them, the enhanced Karnik–Mendel (EKM) algorithm can
effectively deal with uncertainties presented as T2FS. However, EKM
algorithm may become useless when the parameters are associated
with probability distributions. Chance-constrained programming (CCP)
proves to be an effective approach because that it permits violation of
constraints to some extent and can handle randomness at the right-hand
sides of constraints (Zeng et al., 2014). Although CCP provides means
of analyzing decision risks from different constraints, it may become
infeasible when the sample size is too small to obtain distributional
information (Li et al., 2011). Thus, interval chance-constrained pro-
gramming (ICCP) was proposed to enhance the capability of CCP by
being able to deal with interval uncertainties without the requirement
of known distribution functions. In real world problems, the available
water for irrigation involves a number of natural process (e.g., the
recharge and discharge of the aquifer) and human activities (e.g., the
pumping technique to be used). It may be estimated as random vari-
ables; meanwhile, the mean value may be obtained as T2FS, leading to
type-2 fuzzy random variables. Both EKM and ICCP have difficulties in
tackling such hybrid uncertainties expressed as random variables with
two-layer fuzziness.

Therefore, this study aims at developing a centroid-based type-2
fuzzy-probabilistic programming (CT2FP) approach for conjunctive use
of surface water and groundwater in a hybrid uncertain environment.
CT2FP cannot only reflect highly uncertain information (i.e., type-2
fuzzy random variables) in the right-hand sides of constraints, but also
reflect relationship between system benefit and system reliability. A so-
lution method based on 𝛼-plane theory, EKM and interactive algorithm
will be proposed to transform type-2 fuzzy-probabilistic constraints into
their deterministic equivalents. The developed approach will be applied
to a real case in Zhangweinan River Basin (China) to demonstrate its
applicability. Results will be used for identifying desired decision alter-
natives among crop planning, agricultural irrigation, and groundwater
utilization with a maximized system benefit and a minimized system-
failure risk.

2. Methodology

In this section, the development of the CT2FP approach will be
advanced. CT2FP will integrate techniques of CCP, IPP and EKM to

handle multiple uncertainties presented in terms of intervals, type-2
fuzzy sets, probabilistic distribution, and their combinations.

2.1. Centroid type reduction

Type-2 fuzzy sets (T2FS), as an extension of conventional fuzzy
sets, are defined as sets whose membership function is also fuzzy
(i.e., membership grade of each element is no longer a crisp value but a
fuzzy set). A continuous T2FS 𝐴 can be defined as (Aliev et al., 2011):

𝐴 (𝑥) = ∫𝑥∈𝑋 ∫𝑢∈𝐽𝑥
𝑢𝐴 (𝑥, 𝑢) ∕ (𝑥, 𝑢) , 𝐽𝑥 ⊆ [0, 1] (1)

where 𝑢 is the primary membership grade of 𝑥, 0 ≤ 𝑢𝐴 (𝑥, 𝑢) ≤ 1 is the
secondary membership grade of (𝑥, 𝑢), 𝑋 is called a primary domain
and 𝐽𝑥 is the support of the secondary membership function. In detail,
a triangular type-2 fuzzy set (i.e., denoted as [𝑎, 𝑏, 𝑐, 𝑑, 𝑒]) can be seen as
a triangular fuzzy set with triangular secondary membership function.
Based on 𝛼-plane theory, an 𝛼-plane of a T2FS 𝐴 can be defined as the
union of the entire primary memberships of 𝐴 whose secondary grades
are greater than or equal to 𝛼 (0 ≤ 𝛼 ≤ 1). Each 𝛼-plane of 𝐴 can be
presented as:

𝐴𝛼 =
{

(𝑥, 𝑢) , 𝑢𝐴 (𝑥, 𝑢) ≥ 𝛼|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥 ⊆ [0, 1]
}

. (2)

The 𝛼-level set of the secondary membership functions at each value of
𝑥 can be denoted as follows:

𝑆𝐴 (𝑥|𝛼) =
[

inf
{

𝑢|𝑢 ∈ 𝐽𝑥, 𝑓𝑥 (𝑢) ≥ 𝛼
}

, sup
{

𝑢|𝑢 ∈ 𝐽𝑥, 𝑓𝑥 (𝑢) ≥ 𝛼
}]

. (3)

Then, 𝐴𝛼 can be denoted as:

𝐴𝛼 = ∫∀𝑥∈𝑋

[

inf
{

𝑢|𝑢 ∈ 𝐽𝑥, 𝑓𝑥 (𝑢) ≥ 𝛼
}

, sup
{

𝑢|𝑢 ∈ 𝐽𝑥, 𝑓𝑥 (𝑢) ≥ 𝛼
}]

∕𝑥. (4)

Since each 𝛼-plane of 𝐴 is a special interval type-2 fuzzy set (i.e., 𝛼-
level T2FS) and can be bounded by its lower and upper membership
functions (i.e., 𝑢−

𝐴
(𝑥|𝛼) and 𝑢+

𝐴
(𝑥|𝛼)), the two membership functions can

be formulated as:

𝑢−
𝐴
(𝑥|𝛼) = ∫𝑥∈𝑋

inf
{

𝑢|𝑢 ∈ 𝐽𝑥, 𝑓𝑥 (𝑢) ≥ 𝛼
}

(5)

𝑢+
𝐴
(𝑥|𝛼) = ∫𝑥∈𝑋

sup
{

𝑢|𝑢 ∈ 𝐽𝑥, 𝑓𝑥 (𝑢) ≥ 𝛼
}

. (6)

Then, EKM algorithm can be used to compute the centroid of each 𝛼-
level T2FS. Let 𝑥𝑖 (𝑖 = 1, 2,… , 𝑁) represent the discretization of 𝛼-level
T2FS and sorted in an ascending order (Melin et al., 2014). Centroid of
𝐴𝛼 (i.e.,𝐶±

𝐴𝛼
= [𝐶−

𝐴𝛼
, 𝐶+

𝐴𝛼
]) can be computed as the optimal solutions of

the following interval weighted average problems:

𝐶−
𝐴𝛼

=

∑𝐿
𝑖=1 𝑥𝑖 ⋅ 𝑢

+
𝐴

(

𝑥𝑖|𝛼
)

+
∑𝑁

𝑖=𝐿+1 𝑥𝑖 ⋅ 𝑢
−
𝐴

(

𝑥𝑖|𝛼
)

∑𝐿
𝑖=1 𝑢

+
𝐴

(

𝑥𝑖|𝛼
)

+
∑𝑁

𝑖=𝐿+1 𝑢
−
𝐴

(

𝑥𝑖|𝛼
)

(7)

𝐶+
𝐴𝛼

=

∑𝑅
𝑖=1 𝑥𝑖 ⋅ 𝑢

−
𝐴

(

𝑥𝑖|𝛼
)

+
∑𝑁

𝑖=𝑅+1 𝑥𝑖 ⋅ 𝑢
+
𝐴

(

𝑥𝑖|𝛼
)

∑𝑅
𝑖=1 𝑢

−
𝐴

(

𝑥𝑖|𝛼
)

+
∑𝑁

𝑖=𝑅+1 𝑢
+
𝐴

(

𝑥𝑖|𝛼
)

(8)

where 𝐿 and 𝑅 are called switch points with 𝑥𝐿 ≤ 𝐶−
𝐴𝛼

≤ 𝑥𝐿+1 and 𝑥𝑅 ≤
𝐶+
𝐴𝛼

≤ 𝑥𝑅+1. To illustrate the applicability of the centroid type reduction
method, a detailed example is introduced in Fig. 1. For a triangular type-
2 fuzzy set 𝐴𝛼 = [1.67, 1.90, 2.86, 3.19, 3.77], the membership grades of
each 𝛼-level T2FS are presented. When 𝑁 = 200, centroid of 𝐴𝛼 are
[2.572, 2.844] under 𝛼 = 0, [2.613, 2.815] under 𝛼 = 0.25, [2.652,
2.786] under 𝛼 = 0.50, and [2.688, 2.755] under 𝛼 = 0.75, respectively.

2.2. Centroid-based type-2 fuzzy-probabilistic programming

In real world problems, the available water resources may be com-
pounded by human activities (e.g., the pumping technique to be used)
and expressed as fuzzy sets. These fuzzy sets are usually associated
with randomness (i.e., involve a number of random processes and
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