
Engineering Applications of Artificial Intelligence 70 (2018) 52–66

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Secure information sharing in social agent interactions using information
flow analysis
Shahriar Bijani a,*, David Robertson b, David Aspinall b

a Computer Science Department, Shahed University, Persian Gulf Highway, Tehran, Iran
b Informatics School, University of Edinburgh, 10 Crichton St. Edinburgh, UK

a r t i c l e i n f o

Keywords:
Multi-agent systems (MASs)
Open systems
Language-based security
Information leakage
Information flow analysis
Lightweight Coordination Calculus (LCC)

a b s t r a c t

When we wish to coordinate complex, cooperative tasks in open multi-agent systems, where each agent has
autonomy and the agents have not been designed to work together, we need a way for the agents themselves to
determine the social norms that govern collective behaviour. An effective way to define social norms for agent
communication is through the use of interaction models such as those expressed in the Lightweight Coordination
Calculus (LCC), a compact executable specification language based on logic programming and pi-calculus. Open
multi-agent systems have experienced growing popularity in the multi-agent community and gain importance as
large scale distributed systems become more widespread. A major practical limitation to such systems is security,
because the very openness of such systems opens the doors to adversaries to exploit vulnerabilities introduced
through acceptance of social norms.

This paper addresses a key vulnerability of security of open multi-agent systems governed by formal models of
social norms (as exemplified by LCC). A fundamental limitation of conventional security mechanisms (e.g. access
control and encryption) is the inability to prevent information from being propagated. Focusing on information
leakage in choreography systems using LCC, we suggest a framework to detect insecure information flows. A
novel security-typed LCC language is proposed to prevent information leakage.

Both static (design-time) and dynamic (run-time) security type checking are employed to guarantee no
information leakage can occur in annotated agent interaction models. The proposed security type system is
discussed and then formally evaluated by proving its properties. Two disadvantages of the pure dynamic analysis
are its late detection and its inability to detect implicit information flows. We overcome these issues by performing
static analysis. The proposed security type system supports non-interference, i.e. high-security input to the
program never affect low-security output. However, it disregards information leaks due to the termination of
the program.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Security is a major practical limitation to the advancement of
open systems and open multi-agent systems (MASs) is no exception.
Although openness in open MASs makes them attractive for different
new applications, new problems emerge, among which security is a key
issue. Unfortunately, there remain many potential gaps in the security
of open MASs and little research has been done in this area.

A MAS could be defined as a subcategory of a software system, a
high level application on top of the OSI1 networking model; therefore
the security of MASs is not a completely different and new concept;

* Corresponding author.
E-mail addresses: bijani@shahed.ac.ir (S. Bijani), dr@inf.ed.ac.uk (D. Robertson), david.aspinall@ed.ac.uk (D. Aspinall).

1 Open Systems Interconnection.

it is a sub-category of computing security. However, some traditional
security mechanisms resist use in MAS directly, because of the social
nature of MASs and the consequent special security needs (Robles,
2008). Open MASs are particularly difficult to protect, because we can
provide only minimum guarantees about the identity and behaviour of
agents.

Confidentiality is one of the main features of a secure system that
is challenging to be assured in open MAS. Open MASs are convenient
platforms to share knowledge and information, however usually there
exists some sensitive information that we want to protect. The openness
of these systems increases the potential for unintentional leaking of

https://doi.org/10.1016/j.engappai.2018.01.002
Received 20 January 2017; Received in revised form 13 August 2017; Accepted 1 January 2018
0952-1976/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2018.01.002
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2018.01.002&domain=pdf
mailto:bijani@shahed.ac.ir
mailto:dr@inf.ed.ac.uk
mailto:david.aspinall@ed.ac.uk
https://doi.org/10.1016/j.engappai.2018.01.002


S. Bijani et al. Engineering Applications of Artificial Intelligence 70 (2018) 52–66

Fig. 2.1. LCC language syntax; principal operators are: messages (and), conditional (<−), sequence (then) and committed choice (or).

sensitive information. Thus, it is crucial to have mechanisms that
guarantee confidentiality and to assure that the publicly accessible
information during the interactions is what we deliberately want to
share.

Information leakage denotes disclosure of secret information to
unauthorised parties via insecure information flows. Information leaks
in agent interactions occur when secret data are revealed through
message transfers, constraints or assigning roles to agents.

An electronic institution (Esteva et al., 2001) or an interaction model is
an organisation model for MASs that provides a framework to describe,
specify and deploy agent interaction environments (Joseph et al., 2006).
It is a formalism which defines agents’ interaction rules and their
permitted and prohibited actions. While interaction models can be used
to implement security requirements of a multi-agent system, they also
can be turned against agents to breach their security in a variety of ways,
as we will show in this paper.

To employ a language-based approach to secure interaction models,
we need to select an agent language. We chose the Lightweight Coordina-
tion Calculus (LCC) as the agents’ communication language (see Section 2
for a summary of LCC).

Common security techniques such as conventional access control,
encryption, digital signatures, virus signature detection and information
filtering are necessary but they do not address the fundamental problem
of tracking information flow in information systems, therefore, they can-
not prevent all information leaks. Access control mechanisms only pre-
vent illegal access to information resources and cannot be a substitute
for information flow control (Sabelfeld and Myers, 2003). Encryption-
based techniques guarantee the origin and integrity of information, but
not its behaviour.

This paper is laid out as follows. First, different types of insecure
information flows in open MAS governed by interaction models are
introduced. Second, a security type system is proposed by defining
security types and the type inference rules. Then, the security type system
is evaluated by proving some of its properties. Next, the dynamic and
the static approaches in the interaction type checking are reviewed and
non-interference and declassification are discussed.

2. Lightweight Coordination Calculus (LCC)

In our security analysis Lightweight Coordination Calculus (LCC) is
used to implement agents’ interaction models and formulate attacks.
LCC (Robertson, 2005), is a declarative language used to specify and
execute social norms in a peer to peer style. LCC is a compact executable
specification based on logic programming.

An interaction model in LCC is defined as a set of clauses, each of
which specifies a role and its process of execution and message passing.
The LCC syntax is shown in Fig. 2.1.

Each role definition specifies all of the information needed to
perform that role. The definition of a role starts with: a(roleName,
PeerID). The principal operators are outgoing message (=>), incom-
ing message (<=), conditional (<−), sequence (then) and committed
choice (or). Constants start with lower case characters and variables
(which are local to a clause) start with upper case characters. LCC
terms are similar to Prolog terms, including support for list expressions.
Matching of input/output messages is achieved by structure matching,
as in Prolog.

The right-hand side of a conditional statement is a constraint.
Constraints provide the interface between the interaction model and
the internal state of the agent. These would typically be implemented
as a Java component which may be private to the peer, or a shared
component registered with a discovery service.

Role definitions in LCC can be recursive and the language supports
structured terms in addition to variables and constants so that, although
its syntax is simple, it can represent sophisticated interactions. Notice
also that role definitions are ‘‘stand alone’’ in the sense that each role
definition specifies all the information needed to complete that role.
This means that definitions for roles can be distributed across a network
of computers and (assuming the LCC definition is well engineered)
will synchronise through message passing while otherwise operating
independently.

Robertson (2005) defined the following clause expansion mechanism
for agents to unpack any LCC interaction model they receive and
suggested applying rewrite rules to expand the interaction state:

𝐶𝑖
𝑀𝑖 ,𝑀𝑖+1 ,𝑃 ,𝑂𝑖
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝐶𝑖+1𝑠,… , 𝐶𝑛−1

𝑀𝑛−1 ,𝑀𝑛 ,𝑃 ,𝑂𝑛
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝐶𝑛

where 𝐶𝑛 is an expansion of the original LCC clause 𝐶𝑖 in terms of the
interaction model 𝑃 and in response to the set of received messages
𝑀𝑖, 𝑂𝑛 is an output message set, 𝑀𝑛 is a remaining unprocessed set of
messages.

The rewrite rules allow an agent to conform to the interaction model
by unpacking clauses, finding the next step and updating the interaction
state. The rewrite rules are defined in the LCC interpreter, which should
be installed on each agent running LCC codes. For more information
about the LCC expansion algorithm see Robertson (2005) and Robertson
et al. (2009).

53



Download English Version:

https://daneshyari.com/en/article/6854224

Download Persian Version:

https://daneshyari.com/article/6854224

Daneshyari.com

https://daneshyari.com/en/article/6854224
https://daneshyari.com/article/6854224
https://daneshyari.com

