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a b s t r a c t

Studies performed on sea clutter readings often include fitting the data searching for the preferential amplitude
distribution. In this process, the estimation through the method of moments and the Kolmogorov–Smirnov test are
usually used with positive results. However, the procedure cannot be directly applied in the fast selection of the
distribution in operational schemes because it consumes a high amount of computational resources. The authors
found a new way of estimating the sea clutter preferential distribution by using a neural network that takes
histograms of the readings as an input, achieving faster and more precise results than the traditional alternative.
The effectiveness of the proposal was verified with computer generated data for the Weibull, Log-Normal and K
distributions. Besides, analyses were executed including real radar samples taken with the IPIX radar.

1. Introduction

Nowadays, the radar has evolved from its initial applications in
the military field to be widely used in civilian tasks, such as weather
forecast, control of air and maritime traffic, and road safety (Melvin,
2014). Yet, the main purpose of the device remains the same: to detect
objects within the exploration region and to estimate their position,
speed and movement direction, among other features (Meikle, 2008).

When operating in maritime scenarios, in addition to the signal re-
turning from targets, the radar antenna receives undesired contributions
from reflections originated at the sea surface. Known as sea clutter, these
contributions exhibit a random behavior, which has been deeply studied
and reproduced in simulation environments (Oluwale Oyedokun, 2012).

Particularly, the selection of the clutter preferential distribution has
been addressed in multiple investigations due to its proven influence in
the detection (Sekine et al., 2015; Palama et al., 2015). The Weibull
(Ishii et al., 2011; Dong, 2006), Log-Normal (Yim et al., 2007; Sayama
and Ishii, 2013) and K (Meng et al., 2013; Tanriverdi, 2012) models are
generally accepted as the best ones for representing the fluctuation of
sea surface measurements for a wide range of conditions (Machado Fer-
nández and Bueno González, 2012).

In order to estimate which distribution holds a better proximity
with a given set of samples, a process based on two steps is usually
followed (Gato Martínez et al., 2016; Makhoul et al., 2014; Mandal
and Bhattacharya, 2013): (1) the estimation of the shape parameter
using the Method of Moments (MoM), and (2) the selection of the
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best model by applying the Kolmogorov–Smirnov (KS) goodness of fit
test. Although its use is extensive, the algorithm cannot be applied
in operational environments given its high computational cost, which
delays the response of radar systems. Therefore, its application has been
limited almost exclusively to conducting a posteriori analysis of the
collected information.

For solving the above described problem, the authors aimed at
finding a new method for the selection of the sea clutter preferential
distribution with an improved performance in terms of speed. The
solution, that was finally conceived, managed to significantly accelerate
the execution times using Neural Networks (NN) to replace both the
MoM estimation and the KS test. Together, the new scheme enhanced
the accuracy of results, which indicates it will also contribute to improve
radar detection and identification of abnormal features of the sea
surface. The technique was validated with computer generated data and
radar readings for the Weibull, Log-Normal and K distributions, and it
is expected to be extended to other clutter related models such as the
Pareto and Compound Gaussian.

The paper proceeds as follows. The next section, under the name
of ‘‘Materials and Methods’’, provides the basics of the Weibull, Log-
Normal and K distributions, as well as supplementary information on
the MoM and the KS test. In addition, the internal variables of the
neural network are also described. Later, in ‘‘Results and Discussion’’,
the performance of the neural network is compared with that achieved
applying the MoM and KS combination, both with computer generated
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data and with samples taken from a database recorded with the IPIX
radar. Furthermore, an assessment is made on the importance and
application of the presented method. Finally, ‘‘Conclusions and Future
Research’’ closes the document, summarizing the main contributions of
the paper and offering recommendations on possible research lines.

2. Materials and methods

The current section is divided into three sub-sections. The first one
introduces the main definitions related to the Weibull, Log-Normal and
K distributions, justifying the choice of these models. The second one
describes the traditional alternative for selecting the preferential clutter
distribution consisting of two techniques: (1) parametric estimation and
(2) decision on the best model. The third and final sub-section presents
the characteristics of the neural network used to obtain the new solution.

2.1. Amplitude distributions

The amplitude distributions used in this project were the Weibull
(1), the Log-Normal (2), and the K (3). They have all received intensive
validation in the radar community and they were categorized as classical
distributions for sea clutter modeling in Machado Fernández and
Bueno González (2012).

The K distribution is the most widely accepted model for high
resolution sea echoes observed at low grazing angles (Ward et al.,
2013). The Weibull distribution is a versatile choice that has been used
for land (Sayama and Sekine, 2001), weather (Sayama and Ishii, 2013)
and ice (Vicen Bueno et al., 2010) clutter; in addition, in Ishii et
al. (2011) and Vicen Bueno (2011) it was chosen as the best fitting
model for sea clutter data. Finally, the Log-Normal distribution tends
to fit measurements in particular situations such as: when the HH
polarization is used (Farina et al., 1997), when analyzing the clutter
spatial distribution (Dong, 2004), and for cells containing strong mixed
target and clutter reflections (Ishii et al., 2011; Sayama and Ishii, 2013).
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In expression (1), 𝑓𝑊 is the Weibull PDF (Probability Density Func-
tion), while 𝛼 and 𝛽 are the scale and shape parameters respectively.
Likewise, in (2) and (3), 𝑓𝐿𝑁 and 𝑓𝐾 are the Log-Normal and K PDFs,
being (𝜇, 𝑐) the scale parameters and (𝜎, 𝑣) the shape parameters. In all
cases, the 𝑥 was used as the independent variable. Moreover, 𝛤 (.) is the
Gamma function and 𝐾𝑣−1(.) is the Bessel function of the second kind
and order 𝑣 − 1 (OConnor, 2011). Complementary formulas such as
expressions for computing moments can be found in OConnor (2011)
and Cetin (2008).

The shape parameter is the one who plays a decisive role in the
detection (Machado Fernández and Bacallao Vidal, 2014). Therefore,
the neural network was trained with samples whose shape parameter
was altered in the range of possible values, whereas the scale param-
eter was arranged for forcing the mean to one, similar to what was
done in Machado Fernández et al. (2015), Machado Fernández and
Bacallao Vidal (2016a) and Machado Fernández (2015). For the Weibull
case, it was used: 0, 5 < 𝛽 < 6, 25 (Sekine et al., 2015; Sayama and Ishii,
2013; Vicen Bueno, 2011; Dong, 2004; Sayama et al., 2006; Greco et
al., 2004), for the Log-Normal model: 0, 025 < 𝜎 < 1, 25 (Sayama and
Ishii, 2013; Sayama and Sekine, 2001; Farina et al., 1997; Greco et al.,
2004), and for the K distribution: 0, 1 < 𝑣 < 30 (Dong, 2006; Sayama et
al., 2006; Greco et al., 2004; Antipov, 2001; Nohara and Haykin, 1991).
The normalization of the mean simplifies the problem presented to the
neural network without disturbing the proportion between the samples.
It should be noted that the output of any common CFAR technique
remains invariable when fed with normalized samples.

2.2. Method of moments and KS test

When looking to match a statistical distribution with radar read-
ings, the method of moments and the KS test are commonly used
(Gato Martínez et al., 2016; Makhoul et al., 2014; Mandal and Bhat-
tacharya, 2013). The first one is responsible for searching the best
matching configuration of the parameters for each distribution. Then
the second one decides which of the distributions displays a better fit
with the readings, making a comparison between the empirical and the
theoretical CDFs (Cumulative Distribution Function), being the latter
estimated from the MoM calculations.

Expression (4) results from applying the MoM to the Weibull dis-
tribution (Nielsen, 2011). The formula needs to be solved by iterative
methods because the shape parameter (𝛽) cannot be separated from the
Gamma function (𝛤 (.)) (OConnor, 2011). Moreover, 𝑚2

1 is the square of
the mean and 𝑚2 is the second algebraic moment (intensity).

𝑚2

𝑚2
1

=
𝛤
(

2
𝛽 + 1

)

𝛤 2
(

1
𝛽 + 1

) (4)

Once 𝛽 is obtained, 𝛼 can be calculated using (5).
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Moreover, the Lognormal parameters can be estimated using (6) and (7)
(McLeod, 1998). In this case, the scale parameter (𝜇) should be estimated
first because it is need for the shape parameter (𝜎).
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Lastly, although there are several alternatives, expressions (8) and (9)
are usually applied for estimating the K distribution parameters, taking
the second (𝑚2) and fourth (𝑚4) algebraic moments as input (Yim et al.,
2007; Mezache and Sahed, 2010).
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The KS goodness of fit test verifies the rejection of the null hypothesis
(𝐻0), which states that the empirical cumulative distribution coincides
with the theoretical one denoted 𝐹 (𝑥). Assuming 𝑆𝑛(𝑥) is the empirical
CDF observed in a radar measurement, containing the 𝑥1, 𝑥2,… , 𝑥𝑛
samples, the null hypothesis will not be rejected if there are reduced
deviations of 𝑆𝑛(𝑥) from 𝐹 (𝑥). Specifically, the test uses the largest
deviation as a measure of the quality of the fit, applying formula (10).

𝐷𝑛 = 𝑚𝑎𝑥|𝐹 (𝑥) − 𝑆𝑛(𝑥)| (10)

After calculating 𝐷𝑛, auxiliary expressions detailed in Marques de
Sá (2007) allow verifying the quality of the fit through a variable
commonly denoted as 𝑝, whose value goes from 0 to 1. As 𝑝 approaches
to one, it is presumed that the fit is more accurate. However, if the
variable falls below 0,05 the null hypothesis will be rejected.

When the goodness of fit test is performed on clutter data, it is con-
sidered that the model exhibiting the highest 𝑝 value is the preferential
distribution. The CDFs shown in (11), (12) and (13) correspond to the
Weibull, Log-Normal and K distributions respectively (Ward et al., 2013;
Cetin, 2008), where 𝑒𝑟𝑓 is the error function.

𝐹 (𝑥|𝛼, 𝛽) = 1 − exp
[

−
(𝑥
𝛼

)𝛽]
(11)

124



Download English Version:

https://daneshyari.com/en/article/6854231

Download Persian Version:

https://daneshyari.com/article/6854231

Daneshyari.com

https://daneshyari.com/en/article/6854231
https://daneshyari.com/article/6854231
https://daneshyari.com

