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a b s t r a c t

Semi-supervised Non-negative Matrix Factorization (NMF) can not only utilize a fraction of label information,
but also effectively learn local information of the objectives, such as documents and faces. Semi-supervised NMF
is an efficient technique for dimensionality reduction of high dimensional data. In this paper, we propose a
novel semi-supervised NMF, called Dual-graph regularized Non-negative Matrix Factorization with Sparse and
Orthogonal constraints (SODNMF). Dual-graph model is added into semi-supervised NMF, and the manifold
structures of the data space and the feature space are taken into account simultaneously. In addition, the sparse
constraint is used in SODNMF, which can simplify the calculation and accelerate the processing speed. The most
important is that SODNMF makes use of bi-orthogonal constraints, which can avoid the non-correspondence
between images and basic vectors. Therefore, it can effectively enhance the discrimination and the exclusivity
of clustering, and improve the clustering performance. We give the objective function, the iterative updating
rules and the convergence proof. Empirical experiments demonstrate encouraging results of our novel algorithm
in comparison to four algorithms within some state-of-the-art algorithms through a set of evaluations based on
three real datasets.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With the advent of big data era, the amount of data increases
more and more, and the dimensionality of data becomes larger and
larger (Shang et al., 2016a; Lee and Seung, 1999). How to deal with
massive high dimensional data and find an appropriate low dimensional
representation of data are important issues in data mining and analysis
(Shang et al., 2017, 2016b). Such as the applications of data mining and
analysis in commodity recommendation and security monitoring (Tian
and Chen, 2017). An effective low dimensional representation of data
can not only mine the latent structural information of data (Ma et al.,
2016), but also remove the redundant features in the original data and
rapidly deal with massive high dimensional data (Gu et al., 2017).

Matrix factorization is an efficient dimensionality reduction tech-
nique, which can reduce the dimensionality of high dimensional data.
There are many classical matrix factorization techniques, such as Sin-
gular Value Decomposition (SVD) (Duda et al., 2012), Principal Compo-
nent Analysis (PCA) (Jolliffe, 1986), Linear Discriminant Analysis (LDA)
(Pang et al., 2014), Non-negative Matrix Factorization (NMF) (Zheng et
al., 2007; Paatero and Tapper, 1994) and so on. However, compared
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with other matrix factorization technique, NMF can effectively learn
local information of the objectives, such as documents and faces.
Therefore, NMF can make better performance on document clustering
(Lee and Seung, 1999; Paatero and Tapper, 1994; Xu et al., 2003;
Shahnaz et al., 2006), face recognition (Lee and Seung, 1999; Li et al.,
2001) and other practical applications.

NMF aims to decompose the original high dimensional data matrix
into two low dimensional data matrices, and the product of the two
low dimensional data matrices approximates the original high dimen-
sional data matrix as far as possible. In this way, we can reduce the
dimensionality of the original high dimensional data. Classical NMF is
an unsupervised learning algorithm, which has been widely used in data
clustering. However, there is often a fraction of label information in
the original data in the real world, and the classical NMF algorithms
cannot make full use of the label information in the original data.
Many machine learning researchers have found that the semi-supervised
algorithm using a fraction of label information can improve the accuracy
of learning (Belkin et al., 2006; Feng et al., 2016; Yang et al., 2014),
so the accuracy of unsupervised NMF learning is inferior to many
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semi-supervised algorithms. Recently, in order to make full use of the
label information, many scholars have improved the unsupervised NMF
and proposed many semi-supervised NMF algorithms (Liu et al., 2012;
Babaee et al., 2016), which can not only take advantages of the local
information of the object in NMF, but also effectively utilize a fraction
of label information to improve the accuracy of NMF learning. In Liu et
al. (2012), Liu et al. proposed a semi-supervised NMF called Constrained
Non-negative Matrix Factorization (CNMF) which embeds the label
information as hard constraints into the objective function of NMF. In
the new low dimensional representation space, the points with the same
label have the same coordinates. In Discriminative Nonnegative Matrix
Factorization (DNMF) (Babaee et al., 2016), a fraction of label informa-
tion is introduced by coupling discriminative regularizer to the objective
function of the semi-supervised NMF. However, many algorithms like
CNMF and DNMF cannot exploit the local geometric information of data
and make full use of the potential structural information. In addition,
the previous semi-supervised NMF algorithms do not take advantages of
the sparsity of matrices, which results in the complex calculation and the
long optimization time. The non-correspondence between images and
basic vectors also makes the previous semi-supervised NMF algorithms
lack of discrimination.

In order to solve the above problems, we propose a novel semi-
supervised non-negative matrix factorization algorithm, called Dual-
graph regularized Non-negative Matrix Factorization with Sparse and
Orthogonal constraints (SODNMF). Motivated by recent progress in
dual regularization (Sindhwani et al., 2009; Gu and Zhou, 2009) and
structural information (Ma et al., 2016; Gu et al., 2017), we combine
dual-graph model with semi-supervised NMF to make full use of the
potential structural information, so the manifold structures of the data
space and the feature space are taken into account simultaneously.
In addition, inspired by the recent development of sparse constraint
(Luo and Zhang, 2014) and orthogonal constraint (Ding et al., 2006),
we introduce sparse constraint and bi-orthogonal constraints into semi-
supervised NMF, which can not only overcome the disadvantage of the
slow optimization and the complex calculation in many existing semi-
supervised NMF algorithms, but also avoid the non-correspondence be-
tween images and basic vectors to effectively enhance the discrimination
and the exclusivity of clustering. In order to prove the efficiency and
effectiveness of our algorithm, we give the convergence proof of the
objective function and the experimental results of SODNMF and other
related algorithms on three real datasets ORL, PIE and TDT2.

Our main contributions are the following four aspects:

1. Use of the iterative updating rules derived from ordinary non-
negative matrix factorization incorporating all the constraints
may not induce a reliable solution due to scaling issue in several
low dimensional matrices. To avoid this problem, we introduce
a diagonal scaling matrix into semi-supervised NMF.

2. Dual-graph model is added into semi-supervised NMF, which
constructs two neighbor graphs of the data space and the feature
space respectively. In this way, we can make full use of the
potential structural information on account of preserving the
manifold structures of the data space and the feature space
simultaneously.

3. Sparse constraint with 𝐿2,1∕2-norm on the coefficient matrix in
the feature space is incorporated as the additional condition,
which can not only make the coefficient matrix with a good
sparsity and simplify the calculation, but also enhance the local
learning ability and robustness of the algorithm.

4. Bi-orthogonal constraints are adopted in SODNMF. Each image
can correspond to the unique basic vector with the orthogonal
constraint on the coefficient matrix in the feature space, which
can effectively enhance the discrimination of clustering. The
orthogonal constraint on the basic matrix in the data space
can enhance the exclusivity across the classes and improve the
clustering performance.

The rest of the paper is organized as follows: In Section 2, we give
an introduction of the classical NMF and some related NMF algorithms.
In Section 3, we introduce the mathematical model and the solution
procedure of our algorithm, and then prove the convergence of the
optimization scheme. In Section 4, we provide a large number of
experiments to demonstrate the efficiency and effectiveness of our
algorithm. Finally, we draw a conclusion and provide suggestions for
future work in Section 5.

2. Related work

2.1. NMF

NMF can obtain two low dimensional data matrices by decomposing
the original high dimensional data matrix, and the product of the two
low dimensional data matrices approximates the original data matrix as
far as possible to find an appropriate low dimensional representation
of the original data matrix. We have an original data matrix 𝑿 =
[𝒙1,𝒙2,… ,𝒙𝑛] ∈ ℜ𝑚×𝑛, where 𝑚 is the number of the feature dimensions,
𝑛 is the number of the samples. 𝒙𝑖 = [𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚]𝑇 ∈ ℜ𝑚 is the 𝑖th
vector. In NMF, the original high dimensional data matrix 𝑿 should be
decomposed into two low dimensional data matrices 𝑼 = [𝑢𝑖𝑗 ] ∈ ℜ𝑚×𝑘

and 𝑽 = [𝑣𝑖𝑗 ]𝑇 ∈ ℜ𝑛×𝑘, where 𝑘 is the clustering number, 𝑼 is the
coefficient matrix in the feature space and 𝑽 is the basic matrix in the
data space. The purpose of NMF is to let the product of the coefficient
matrix 𝑼 and the basic matrix 𝑽 approximate the original data matrix
𝑿 as far as possible:

𝑿 ≈ 𝑼𝑽 𝑇 . (1)

In other words, we should minimize the following residual error
matrix:

𝑂 = ‖𝑿 − 𝑼𝑽 𝑇
‖

2
𝐹 𝑠.𝑡. 𝑢𝑖𝑗 ≥ 0, 𝑣𝑖𝑗 ≥ 0 (2)

where ‖ ⋅ ‖𝐹 is Frobenius norm (F-norm) of the matrix. We can get the
Euclidean distance of two matrices by calculating the square of the F-
norm. In Zheng et al. (2007), Lee et al. provided the iterative updating
rules to solve such a minimization problem, and prove the convergence.
The iterative updating rules of the coefficient matrix 𝑼 and the basic
matrix 𝑽 of NMF are as follows:

𝑢𝑖𝑗 = 𝑢𝑖𝑗
(𝑿𝑽 )𝑖𝑗

(𝑼𝑽 𝑇 𝑽 )𝑖𝑗
(3)

𝑣𝑖𝑗 = 𝑣𝑖𝑗
(𝑿𝑇𝑼 )𝑖𝑗
(𝑽 𝑼𝑇𝑼 )𝑖𝑗

. (4)

First of the iterative process, we initialize the coefficient matrix 𝑼
and the basic matrix 𝑽 randomly, and then update them according to the
iterative updating rules in formula (3) and (4) until the final condition
is reached.

2.2. GNMF

In Cai et al. (2011), Cai et al. proposed Graph Regularized Nonnega-
tive Matrix Factorization (GNMF) which adds manifold learning into the
classical NMF (Belkin et al., 2006; Cai et al., 2009a, b). GNMF constructs
a neighbor graph to simulate the local geometric structure of data. For 𝑛
samples, a neighbor graph with 𝑛 vertices is constructed, and each vertex
corresponds to a sample. For the vertex 𝑥𝑖, we aim to find its 𝑘-nearest
neighbors and establish the edges and weights with 𝑥𝑖 which represent
the similarities between them. Therefore, the weight matrix 𝑾 is also
called the similarity matrix. There are many methods to construct the
weight matrix in the neighbor graph, the common methods are (Cai
et al., 2011): 0–1 weighting, heat kernel weighting and dot-product
weighting. Then, 𝑇 𝑟(𝑽 𝑇𝑳𝑽 ) can be used to measure the smoothness of
the low dimensional representation, so the objective function of GNMF
is measured as follows:

𝑂 = ‖𝑿 − 𝑼𝑽 𝑇
‖

2
𝐹 + 𝑇 𝑟(𝑽 𝑇𝑳𝑽 ) 𝑠.𝑡. 𝑢𝑖𝑗 ≥ 0, 𝑣𝑖𝑗 ≥ 0. (5)
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