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a b s t r a c t

In this paper, a model-based output feedback recurrent wavelet neural network (RWNN) controller is proposed for
a class of nonlinear MIMO systems with time-varying matched/mismatched uncertainties. The proposed RWNN
emulator adaptively trains to follow an ideal state-feedback controller which is designed on the underlying
linear model (ULM) of the plant. Simultaneously, the control system employs an adaptive neural network (NN)
mechanism to estimate the mismatch between the RWNN controller and this ideal control law. As a result, the
conservatism associated with the classical robust control methods where the controller is synthesized based on
worst-case bounds is addressed. Moreover, in order to generalize the subjected class of the investigatable plants,
the echo-state feature of adaptive RWNN is used to contribute to the performance of nonminimum phase systems.
Accordingly, in the context of flexible smart structures with non-collocated sensor/actuator configuration, a
delayed feedback is added in the network which brings about a better match between the model output and
the measured output. As a result, even for systems with an unknown Lipschitz constant of lumped uncertainty,
the controller can be trained online to compensate with an additional revision of the control law following some
Lyapunov-based adaptive stabilizing rules. Additionally, the current approach is proposed as an alternative to the
hot topic of nonlinear system identification-based control synthesis where the exact structure of the nonlinearity
is required.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Neural networks (NN) are structures of massively interconnected
cells which as a whole can model complex dynamical systems. These
structures function by imitating the composition and capacity of the hu-
man brain. Each of the simplistic processing unit cells receives weighted
input signals, passes the weighted summation of these signals through
a nonlinear operator, and emits an output to be transmitted to the next
level processing elements along the outgoing pathways. The application
of NN as a controller (neuro-controllers) in active vibration control has
been studied in the last two decades as the practical implementation
of disturbance rejection control (DRC). However, only a handful of
real-time implementations of nonlinear neuro-active vibration control
systems is reported in the literature (Bouchard et al., 1999). For
instance, Li et al. proposed a new filtered-error back-propagation NN
(FEBPNN) algorithm for vibration control of flexible piezolaminated
structures (Li et al., 2005). They implemented their FEBPNN algorithm
on a digital signal processor (DSP), and it was shown that the proposed
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active vibration/noise control method (AVC/ANC) is effective for the
system in the presence of modeling nonlinearities.

The conventional controllers are often synthesized to deliver only
a specific control performance. In contrast, the neuro-controllers adapt
online to satisfy the time-varying performance objectives in a super-
vised/unsupervised fashion depending on the available computational
power. This distinguishing factor enables the NN to detect and learn
extremely involved and nonlinear mappings (Ghaboussi and Joghataie,
1995). Moreover, various sources of nonlinearities in elastic light-weight
mechanical structures make it impossible to use simplistic feedforward
neural network excluding the tapped delay (Snyder and Tanaka,
1995). In other words, especially in any ANC scheme and AVC of non-
collocated input/output (IO) configuration, where the measurement
delay is the natural feature of the plant, an adaptive mechanism should
be employed in synthesizing the control input signal associated with
nonlinear output measurements. Two practical realizations of these
nonlinearities in smart structures are the geometrical nonlinearities
due to high vibration amplitudes where the linear models are not
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valid anymore (Oveisi and Nestorović, 2017) and the non-collocated
sensor/actuators configurations where an inherent delay is an inevitable
feature of the IO relation (Lee and Elliott, 2001). Providing technical
details of the nonlinearities mentioned earlier is out of the scope of this
paper. However, it is worth mentioning that the authors are interested
in dealing with model-based output feedback nonlinear control design
where the effects of these nonlinearities are treated directly subjected to
the fact that the quantifications of these nonlinear terms are available
in the nominal model of the plant. Recently, methods such as Reverse
Path method (Richards and Singh, 1998; Muhamad et al., 2012) and
Nonlinear Normal Model method (Shaw and Pierre, 1993; Peeters et al.,
2011) gained many attentions for analyzing and quantifying these ge-
ometrical nonlinearities. The interested reader is highly recommended
to refer to Noël and Kerschen (2017) for in-depth technical details. An
alternative to such modeling approaches is the combination of semi-
analytical techniques, e.g. Oveisi et al. (2016), in structural modeling
of nonlinear systems and parameter optimization techniques in Gray-
box System Identification framework (Astroza et al., 2016). Accordingly,
adaption of the black-box polynomial nonlinear state space (PNLSS)
identification approach i.e. Paduart et al. (2010) to the geometrically
nonlinear system is an ongoing research. For AVC purposes, the control
design process for such an elaborate nonlinear model is a complicated
task. In contrast, the proposed controller in this paper relies on the
underlying linear model (ULM) and treats the nonlinearities in an
online framework. Consequently, the comparison of the proposed neuro-
controller in this paper and the nonlinear ones developed based on
Gray-box system identification approaches can be used to determine if
the latter approach is justifiable. This reasonable comparison not only
assesses the justifiability of going through complex modeling procedure
in AVC but also can be used as an alternative solution in the case-studies
where the uncertainty/nonlinearity detection, characterization, and
quantification of the three-step paradigm in Kerschen et al. (2006) is not
possible for technical reasons e.g. experimental costs and accessibility
issues.

On the other hand, the nonlinear model-free robust control schemes
based on the upper-bounds of the norm of the disturbance signals
and matched-/mismatched-uncertainties such as high-gain, variable-
structure, and fuzzy methods can be used in combination with NN to ad-
dress nonlinearities in system dynamics (Khalil and Praly, 2014; Oveisi
and Nestorović, 2016c). For instance, Jnifene and Andrews proposed a
combination of a fuzzy logic controller and neural networks to regulate
the end-effector vibration in a flexible smart beam positioned on a two
DoF platform (Jnifene and Andrews, 2005). He et al. employed a neural
network for modeling the dynamics of a flexible robot manipulator
subjected to input deadzone. They have used radial basis function NN
to capture the deadzone and designed a high-gain observer-based NN
controller (He et al., 2017). Moreover, it is reported that one of the
major deficiencies of standard control systems based on linear time-
invariant (LTI) nominal models are the evolution of plant dynamics
w.r.t. time and the actuator windup problem both of which add to the
nonlinearity of the system (Lin et al., 1996). Accordingly, Li et al.
introduced a genetic algorithm (GA) based back-propagation neural
network suboptimal controller to address the vibration attenuation of
a nine DoF modular robot (Li et al., 2005).

The nonminimum phase vibrating systems with non-collocated ac-
tuator/sensor placements with centralized control configuration may
have right-half plane (RHP) zeros which can significantly restrict the
closed-loop performance as reported in Lee and Elliott (2001). A
detailed analysis on the tradeoff imposed on the performance of these
nonminimum phase systems at different frequencies (in linear control
theory) is previously reported by Freudenberg and Looze (1985).
Alternatively, the echo-state feature of adaptive RWNN is investigated
in this paper to contribute to the performance of nonminimum phase
systems.

To put in a nutshell, the following contributions are reported. Instead
of worst-case analysis based on the classical robust control methods

and on the grounds of following adaptive nonlinear (non-conservative)
control synthesis in AVC framework, a network is assigned to identify
any dynamics that cannot be fit into the LTI framework, or the identified
system fails to capture (see Section 2.1). This feature together with gener-
alization and information storing capabilities of NN opens the possibility of
further investigations based on the nonlinear disturbance observer based
control (DOBC) as a hot topic in modern DRC (Chen et al., 2016). An
ideal controller is derived in terms of the tracking error of the estimated
system state, and an adaptive recurrent wavelet neural network (RWNN)
is configured in Section 2.2.2 to imitate the perfect controller. An
advantage of such configuration compared to the asymptotic stabilizing
techniques is that the mismatch between the ideal and the realized
control law is not left alone. In other words, although the network pa-
rameters of RWNN are adaptively tuned following Lyapunov stabilizing
scheme, an additional observer is assigned to identify the error bounds
and reject them in the tracking error dynamics. This feature may signif-
icantly contribute to the transient performance of the neural controller
especially for the application of smart structures where the frequency
range of interest may encompass up to hundreds of states which cannot
be all considered in the nominal model of the system for obvious reasons.
Note that the WNN-control systems benefit simultaneously from the
learning capabilities of the artificial NN as well as the identification
strength of the wavelet decomposition (Sousa et al., 2002; Hsu et al.,
2006). Two contributions in terms of applicability of the proposed NN-
based control system in real implementations are reported as: (a) Unlike
the state-feedback schemes suggested in the literature (i.e. Lin et al.,
2012, 2014), and similar to the output feedback neural control in Ge et
al. (1999) and Dierks and Jagannathan (2010), the proposed technique
is practical for smart structures where the continuous real system has
infinite dynamics (represented with states) which cannot be measured
individually. However, following the actuator/sensor placement criteria
proposed in the literature (e.g. Nestorović and Trajkov, 2013; Hashem-
inejad and Oveisi, 2016) that reserve the observability conditions in
smart structures, the neural network-based state-observer may provide
an accurate measure of system states in real-time. The nonlinear-in-
parameters neural network (NLPNN) used in observer design is capable
of handling the nonlinearities without a priori known dynamics. The
modified backpropagation (BP) algorithm is therefore implemented to
realize the learning process. For this purpose, the idea in Abdollahi et
al. (2006) is followed. (b) The stabilization of the nominal model of the
plant as pointed in D’haene et al. (2006) encompasses a delay which
if separated from the transfer function of IO results in minimum phase
model. This indicates that similar to echo-state NN (e.g. Mahmoud and
Elshenawy, 2016), the network can capture the delay and the problem
of stabilizing a minimum phase system (as an alternative to Hua et
al., 2007) is a much easier task. Accordingly, the performance of the
proposed control system in damping the effects of disturbance signal at
frequencies close to those of right half plane (RHP) zeros is investigated
for non-collocated configuration. It should be noted that the NN-based
control methods that include the input nonlinearities such as actuation
saturation, deadzone, and output constraints such as He et al. (2016a,
b) are out of the scope of this paper.

In the experimental implementation of the proposed technique of
this paper, a comparison with a standard approach (LQG) is performed.
The interested reader may also compare the results of this paper with the
robust observer-based adaptive fuzzy sliding mode controller and non-
fragile 𝐻2∕𝐻∞ observer-based control system published respectively
in Oveisi and Nestorović (2016c) and Oveisi and Nestorovic (2016b) on
the same benchmark problem. Meanwhile, for some AVC applications
(even with complex geometries), systematical methods are available in
the literature for providing the measure of IO delay e.g. Bossi et al.
(2011).
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