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ABSTRACT

Generative Stochastic Networks (GSN) for supervised tasks generalize the denoising autoencoders by fixing the
deepest layer to the output variables (e.g. class) and estimate the input—output joint distribution as the stationary
transition operator of a Markov chain. Because of multi-layer network architectures with stochastic neurons, GSN
performance depends on the selected architecture and network training. Aiming to improve such a performance,
we introduce a supervised kernel-based learning within a GSN framework. Firstly, the considered network model
induces a temporal model working as a data filtering that extracts refined data representations. Then, we use
the conventional exhaustive search strategy to fix the hidden layer size. Lastly, we propose a novel supervised
layer-wise pre-training that initializes the fine tuning stage of the GSN with more discriminative projection
matrices favoring the optimization of the non-convex cost function. Initial matrices are computed by maximizing
the centered-kernel alignment (CKA) metric, measuring the affinity between projected samples and labels.
We evaluate the proposal performance in comparison with Random, AutoEncoders, and Principal Component
Analysis approaches. As a result, CKA-based pre-training approach captures the complex dependencies between
parameters, increases the convergence speed in the learning stage, and unravels the data distribution to favor
the class discrimination for five widely image collections used in classification tasks of image object recognition.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Generative Stochastic Networks (GSN) are a deep neural network
architecture based on learning the transition distribution of a Markov
chain for estimating the data generating distribution, i.e., generative
learning. The combination of noise, a multi-layer, feed-forward neural
network, and walk back training makes GSN simplify the learning
problem, be less like density estimation, and resemble more a supervised
function approximation, with gradients that can be obtained by back-
probable stochastic units at each layer (Alain et al., 2016). This training
principle for generative probabilistic models has gained increasing
interest in signal processing, pattern recognition, and machine learning
fields, confirming their representational power (Huang, 2015; Bengio
et al., 2013). However, to bring accurate results, deep neural networks
require correct data pre-processing, architecture selection (Bergstra and
Bengio, 2012), and network training (Panchal et al., 2011). The first
aspect deals with learning data representations extracting more useful
information, for which the generative stochastic model sequentially fil-
ters input samples. Each transition provides additional refined data that
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also feed the estimation of the generating distribution. The second one
influences the performance of used training algorithm through different
factors (Sheela and Deepa, 2013): (i) input and output dimensions, (ii)
number of training samples, and (iii) noise injection method. Aiming
to provide a wider field of new applications for GSN, however, some
network training issues must be deeper investigated. Particularly, a
relevant aspect is how to manage the non-convexity of the training
criterion for the parameter space searching.

For deep architectures the training criterion is non-convex and
involves many local minima, getting worse for architectures with more
than two or three levels (Erhan et al., 2009). Although a straightforward
procedure to cope with this issue is the use of multiple random ini-
tializations, it highly increases the time consumption (Bengio, 2012).
A more efficient random initialization is to establish the distribution
and range of network parameters either empirically or to assume
the characteristics of hidden units. In the latter case, the Glorot-style
normalized initialization ensures that each neuron operates in the active
region of its saturating function so that the forward and backward
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propagated variances are layer-wise fixed (Glorot and Bengio, 2010).
Yet, this approach promotes the fast parameter saturation during train-
ing of complex problems, decreasing the system performance (Glorot
and Bengio, 2010). With the purpose of avoiding the saturation of
dense initializations, the sparse initialization technique (SI) randomly
connects neurons of consecutive layers, draws the weights from a unit
Gaussian, and sets the biases to zero (Martens, 2010). Despite allowing
the use of second order optimizations, SI is highly sensitive to the
established activation function and scale constant, slowing down the
learning speed (Sutskever et al., 2013).

To improve the initialization random approaches, the results ob-
tained in Erhan et al. (2010) suggest that unsupervised pretraining
guides the learning towards basins of attraction of minima that support
better generalization from the training dataset. The layer-wise pre-
training is the most used approach for finding a suitable initialization,
aiming to extract a useful higher-level description of the output of
the preceding layer of representation. To this end, a greedy layer-wise
stage of unsupervised learning is firstly carried out, followed by a fine,
supervised tuning (Hinton et al., 2006). Particularly, this pre-training
has been used for parameter optimization in Bengio et al. (2007), using
the restricted Boltzmann machines as building blocks (Bengio et al.,
2007), and in Vincent et al. (2008) for estimating the parameters of
stacked denoising autoencoders (Vincent et al., 2008). As a result, either
supervised learning machine regularizes the fine tuning, depending on
the architecture depth and layer size (Erhan et al., 2010). Nonetheless,
the greedy principle underachieves if the conditional output distribution
is not accurately associated with the input structure (Bengio et al.,
2007). On the other hand, some approaches have been discussed to boost
the learning speed. Thus, the salient features can be extracted by inde-
pendent component analysis (ICA) to initialize the first multi-layer per-
ceptron (MLP) layer though it yields to local minimum solutions (Chen
and Lu, 2013). In contrast to the layer-wise approaches, the parameters
learned simultaneously by a multilayer generative network can also be
employed to initialize the training of a supervised feed-forward network,
increasing the classification accuracy as discussed in Mohamed et
al. (2011). Thus, the contractive regularization for pre-training two-
layered auto-encoders forces the system to have small derivatives on
the inputs, outperforming greedy methods in data generalization and
classification accuracy (Schulz et al., 2015). In general terms, the above
discussed unsupervised pre-training approaches generate more useful
hidden representations than the input space, but many of the resulting
features may be irrelevant for discrimination tasks (Weston et al., 2012).

Here, we introduce a supervised kernel-based learning within a
framework of General Stochastic Networks to cope with the network
topology issues above-described. Firstly, an exhaustive heuristic search
is conducted to select the optimal architecture based on the network
performance measure. Then, we propose a pre-training approach that
reduces the influence of the non-convexity by finding the parameters
increasing the class separability at each layer. To this end, we make
use of the Centered Kernel Alignment (CKA) criterion that assesses
the similarity of two distributions from their characterizing kernels.
The first kernel is built layer-wise from the latent samples and the
second kernel corresponds to the target distribution from the supervised
information. Hence, maximizing the CKA with respect to each projection
matrix results in a pre-trained network that sequentially highlights the
discriminative information from the input samples to the output labels.
The validation is carried out on datasets for object classification and
shows that CKA-based pre-training improves both the learning speed
and the classification accuracy.

The agenda of this paper is organized as follows: Initially, we
describe the mathematical framework and our proposed approach in
Section 2. Then, Section 3 illustrates the results of carried out evalua-
tions on six well-known datasets. Lastly, we discuss all obtained results
and provide conclusions in Sections 4 and 5, respectively.
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Fig. 1. Schematic representation of a GSN Markov chain with backprop-able stochastic
units. — Upward step. — Downward step. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

2. Materials and methods
2.1. General Stochastic Networks for supervised learning

Provided the input distribution P(Z’) for which we only have em-
pirical samples X c &, General Stochastic Networks (GSN) combine
multilayer perceptrons with backprop-able stochastic neurons, noisy
propagations, and walkback training in estimating the corresponding
transition operator of a Markov chain as generative learning approach.
Fig. 1 illustrates a GSN Markov chain for a deep network with L
layers, where X, € RV *? is the input matrix sampled at time instants
tell, ..., T, HZ’ €RN*m is the Ith hidden state matrix at a time step ¢
and m; € N is the size of /th layer so that/ €[1, ..., L]and T > L. Matrix
H! holds N vectors hij € R™, mapping the input samples to the layer /.

Further, the dependency of available latent variables (hidden states)
H! is encoded into a GSN graph through the following set of up-
ward/downward iterations.

{H}:;oer ('@ +H (W) e, )+¢ @B (W) +6,,))
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where b' €eR™ and a' e R™-1 are the offset vectors, W' eR"-1%m ig
the Ith linear projection, vectors ¢,, € R¥N*™ and ¢, e RN*™-1 are
independent noise sources, and the function ¢'(-) € R applies saturating,
non-linear, element-wise operations.

We will define a dGSN, i.e. discriminative-generative stochastic
network that has L layers for classification through the following cost
function (Zohrer and Pernkopf, 2014):

(&, ¥)=log (P(X)) + log (P(¥ ). (2)

Note that the unsupervised learning of log (P(Z)) is usually used for
semi-supervised learning if the labeled data is scarce. In this case,
P(¥|X) is introduced as the conditional probability distribution be-
tween the input 2 and the output % to make GSN suitable for a
supervised learning task. In addition, both distributions are sampled
to guarantee convergence, namely, X c 2 with X eR¥*F holds N
input vectors x; €R” (i€ N) and Y ¢ % with Y €[0, 1]V *€ that contains
N output vectors y; €[0, 11€ representing C mutually exclusive classes.
Hence, the last layer is fixed to the output dimension, i.e. m; =C.

Due to the target Y cannot be forward propagated through the graph
network, it is instead introduced in the cost function so that the Markov
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