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a b s t r a c t

Statistical process control techniques are widely used for quality control to monitor the stability of a process
over time. In modern manufacturing systems with complex and variable processes, appropriate control chart
techniques that can efficiently address nonnormal processes are required. Furthermore, in real manufacturing
environments, process changes occur frequently because of various factors such as product and setpoint changes,
catalyst degradation, seasonal variations, and sensor drift. However, conventional control chart schemes cannot
necessarily accommodate all possible future conditions of a process because they are formulated based on
information recorded in the early stages of the process. Several attempts have been made to accommodate
process changes over time. In the present paper, we propose a time-adaptive support vector data description-
based control chart that can address not only nonnormal in-control observations, but also time-varying processes.
The effectiveness and applicability of the proposed chart was demonstrated through experiments with simulated
data and real data from the metal frame process in mobile device manufacturing.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical process control (SPC) methods are widely used in many
industries such as manufacturing and service operations to monitor
and improve process performance over time (Woodall et al., 2000).
The goal of SPC methods is to reduce predictable quality variations
and monitor the complete system to detect unexpected root causes of
variation (Ferracuti et al., 2015; Vander Wiel et al., 1992). A control
chart is a representative tool of SPC that distinguishes between the
inherent variations within the process and variations from unwanted
process disruptions (Gitlow, 2009; Oakland, 2008). Control charts are
commonly used as graphical tools to quickly detect changes in manu-
facturing processes (Noorossana et al., 2015; Stoumbos and Sullivan,
2002).

The Shewhart control chart is the most representative SPC chart
for manufacturing processes. Shewhart (1939) developed a univariate
control chart to monitor a single quality characteristic. However, mon-
itoring these quality characteristics independently can be misleading
because modern manufacturing systems involve many inter-correlated
quality characteristics (Hwang and Lee, 2015; Lu, 1998).

This limitation prompted the development of multivariate control
charts that can simultaneously consider the correlations between multi-
ple quality characteristics and effectively manage the overall probability
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of Type I errors. Hotelling’s 𝑇 2 control chart has been widely used
to monitor multivariate processes. The monitoring statistics for the 𝑇 2

chart are computed from the following equation:

𝑇 2 =
(

𝑥 − 𝑥
)𝑇𝑆−1 (x − x

)

, (1)

where 𝑥 and 𝑆 are, respectively, the sample mean vector and sample
covariance matrix determined from the in-control data. The 𝑇 2 statistic
can be considered the distance of an observation from the center of in-
control observations, while considering the correlation among variables.
The control limit of a 𝑇 2 chart is proportional to the percentile of an F-
distribution assuming that in-control observations follow a multivariate
normal distribution (Mason and Young, 2002).

As modern manufacturing processes become more complex, in-
control observations of many industrial processes do not follow a normal
distribution (Hu et al., 2015; Yang and Arnold, 2013; Gani et al., 2011).
Thus, traditional control charts such as 𝑇 2 charts do not effectively
reflect the quality characteristics of observations that follow the nonnor-
mal distribution. To overcome the shortcomings of conventional control
charts under nonnormal situations, a number of methods have been
proposed to use one-class classification (OCC) algorithms to monitor
nonnormal processes (Liu et al., 2015; Tuerhong et al., 2014; Sukchotrat
et al., 2009).
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Both OCC algorithms and control charts assume that only the in-
control observations are available for measuring the degree of abnormal-
ity of new observations. The novelty scores of OCC algorithms are used
as the monitoring statistics of OCC-based control charts. This stream of
research began with the introduction of the K chart based on a support
vector data description (SVDD) algorithm (Sun and Tsung, 2003). The K
charts performed well for nonnormal or unknown distributed in-control
processes. Kumar et al. (2006) constructed robust K charts through
normalized monitoring statistics and demonstrated that these charts can
efficiently handle autocorrelated process data. Ning and Tsung (2013)
proposed a guideline to determine the K chart parameters in practice.
Gani et al. (2011) provided an assessment of the K chart by applying it to
a real industrial process and revealed that the K chart is more sensitive
to small mean shifts than the 𝑇 2 chart. Khediri et al. (2012) proposed
the kernel k-means-based SVDD control chart for multimodal processes.
Sukchotrat et al. (2009) proposed a bootstrapping strategy to establish
robust control limits. In addition to the SVDD algorithm, other OCC con-
trol charts include the hybrid novelty score-based control chart and the
𝐾2 chart, based on the k-nearest neighbors data description algorithm
(Tuerhong et al., 2014; Sukchotrat et al., 2009). In summary, OCC-based
control charts have demonstrated their improved performance in many
of the nonnormal and nonlinear situations frequently encountered in
modern manufacturing systems (Tuerhong and Kim, 2015; Grasso et al.,
2015; Kim et al., 2011).

However, in addition to the nonnormal situations, the time-varying
operation of process data is also common in modern industrial processes
(Haimi et al., 2016; Soares and Araújo, 2015; Ge and Song, 2013).
Such behavior can be caused by several factors such as setpoint and
throughput changes, catalyst degradation, sensor drift, and the presence
of unmeasured disturbances (Ketelaere et al., 2011; Choi et al., 2006).
Time-varying process operation is considered a critical issue in many
electronic and chemical engineering fields (Li et al., 2000; Qin, 1998).
Because conventional SPC schemes are formulated based on the data
recorded in the early stage of the process, it is difficult to describe all
possible future conditions of a process. Consequently, traditional control
charts may detect normal variations as faults in time-varying situations,
leading to a high level of Type I error rates (i.e., false alarms). To
enhance the monitoring performance and reduce false alarms in time-
varying situations, some studies have proposed an adaptive technique
in multivariate control charts (Chakour et al., 2015; Ge and Song,
2008; Lee et al., 2006). These approaches are based on updating the
parameters of the control charts for time-varying processes.

Time-varying process monitoring methods can be divided into two
categories: recursive estimation with a weighting parameter and moving
window. In the first category, a weighting parameter is added to the
control chart to allow old data to be gradually forgotten. The adaptive
principal component analysis (PCA)-based 𝑇 2 chart was proposed in
which the sample mean and sample covariance of the in-control data
can be updated in such a manner that more weight is assigned to current
observations than past observations (Zhang et al., 2012; Choi et al.,
2006; Li et al., 2000; Wold, 1994). As for an example of the second
category, the moving window-based methods exclude the oldest data
and include the newest data simultaneously with the data window. The
moving window PCA-based 𝑇 2 chart was developed to control time-
varying processes (Liu et al., 2009; Wang et al., 2005). Xie and Shi
(2012) suggested an adaptive form of Gaussian mixture model (GMM)
charts using a moving window scheme for time-varying processes. In
the moving window GMM, having found the most suitable Gaussian
components for the new data, the parameters of the components are
updated by a moving window.

Despite these efforts, the majority of time-adaptive control charts
rely on the assumption that in-control observations follow a normal
distribution. The above-mentioned adaptive PCA-based process mon-
itoring methods used 𝑇 2 statistics in the projected space. Thus, a
normality assumption of in-control observations in the projected space
is necessary. The moving window GMM method also assumes that each
group of the mixture follows a Gaussian distribution.

The present study focuses on developing a multivariate control chart
for both nonnormal and time-varying processes. The proposed chart is
an extension of the existing SVDD-based chart adding a weight factor to
effectively address the time-varying situations. We define the updating
region for the efficient model-updating structure of the control chart.

The remainder of the paper is organized as follows. Section 2 reviews
the existing SVDD-based control charts. Section 3 describes the proposed
time-adaptive SVDD-based control chart by emphasizing its adaptive
capability for time-varying processes. In Section 4, a simulation study is
conducted to examine the performance of the proposed time-adaptive
SVDD-based control chart under various scenarios. Section 5 presents
the results of a case study using actual data from the metal frame process
in mobile device manufacturing exhibiting nonnormal and time-varying
characteristics. Section 6 provides concluding remarks.

2. SVDD-based control charts

The SVDD algorithm is one of the representative OCC algorithms
(Tax and Duin, 2004). The objective of the SVDD algorithm is to
determine a sphere with minimal volume that can envelop all of the
data points in the training set 𝐱𝒊 = [𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑝]𝑇 , for 𝑖 = 1, 2,… , 𝑛.
This sphere is characterized by two factors, sphere center 𝒂 and radius
𝑅. That is, the problem is to:

𝑚𝑖𝑛𝐹
(

𝑅,𝒂, 𝜀𝑖
)

= 𝑅2 + 𝐶
𝑛
∑

𝑖=1
𝜀𝑖, (2)

s.t. ‖
‖

𝐱𝒊 − 𝒂‖
‖

2 ≤ 𝑅2 + 𝜀𝑖, 𝜀𝑖 ≥ 0, ∀𝑖, (3)

where 𝐶 is the trade-off parameter between the sphere’s volume and the
misclassification error (also referred to as the regularization parameter),
and 𝜀𝑖 is the slack variable that allows 𝐱𝒊 to be outside the sphere.

Eqs. (2) and (3) can be solved by the following Lagrange dual
formulation:

𝑚𝑎𝑥
𝑛
∑

𝑖=1
𝛼𝑖
(

𝐱𝒊 ⋅ 𝐱𝒊
)

−
𝑛
∑

𝑖,𝑗=1
𝛼𝑖𝛼𝑗

(

𝐱𝒊 ⋅ 𝐱𝒋
)

, (4)

s.t.
𝑛
∑

𝑖=1
𝛼𝑖 = 1, 0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖, (5)

where 𝛼𝑖 is Lagrange multiplier. Having solved the above Lagrange
formulation, the values of 𝛼𝑖 and data point 𝐱𝒊 with 𝛼𝑖 > 0 are obtained.
The data points 𝐱𝒊 are called support vectors.

SVDD algorithms can generate a flexible boundary by employing
a kernel trick, which maps an input space into a higher dimensional
feature space by replacing the inner product with kernel functions.
Although many kernel functions are available, Tax and Duin (1999)
demonstrated that the following Gaussian kernel is one of the most
effective functions for SVDD.

𝐾
(

𝐱𝒊 ⋅ 𝐱𝒋
)

= exp
(

− ‖

‖

‖

𝐱𝒊 − 𝐱𝒋
‖

‖

‖

2
∕𝑠2

)

, (6)

where 𝑠 ≠ 0 is the width parameter that controls the level of detail of
the SVDD boundary. For new observation 𝐳, the kernel distance to the
center 𝒂 can be calculated by

‖𝐳 − 𝒂‖2 = 𝐾 (𝐳 ⋅ 𝐳) − 2
𝑛
∑

𝑖=1
𝛼𝑖𝐾

(

𝐳 ⋅ 𝐱𝒊
)

+
𝑛
∑

𝑖,𝑗=1
𝛼𝑖𝛼𝑗𝐾(𝐱𝒊 ⋅ 𝐱𝒋). (7)

For classification, testing observation 𝐳 is classified as the target when
this distance is less than or equal to 𝑅2.

Several studies have implemented the SVDD algorithm to solve SPC
problems. However, previous studies have not addressed time-varying
situations. This motivates the focus of this paper on the development
of an SVDD-based control chart to handle time-varying and nonnormal
situations.
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