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a b s t r a c t

The demand of fast clustering increases rapidly as we keep collecting tremendously large amount of data in
the last decade. In this paper, we propose a nonparametric and representative-based Sparse Self-Represented
Network Map for fast clustering on large dataset. Each node in the network generates a heat map for the dataset
by receiving stimulations from data within its Accepting Field. We developed a weight adjusting method to learn
and summarize the clustering pattern of the data. Such learned map is used for computing clustering results, by
breaking weak links and finding connected components Rather than employing an iterative process to find local
minima, our network passes the dataset only once and is able to capture the global pattern of the dataset as well
as detecting natural number of clusters. As a nonparametric method, we propose Sparse Dynamic Instantiation
to avoid the curse of dimensionality, namely a node or a link is instantiated only when stimulated by input
data. As a result, the overall complexity is linear to the data dimension. Our algorithm is tested on synthetic and
real datasets and compare with popular clustering algorithms (K-means++, Expectation–Maximization, Mean-
Shift and StreamKM++) as well as state-of-art clustering algorithm (Affinity Propagation and Density Peak).
We also applied our clustering algorithm to mobile location clustering, building a Visual Dictionary for image
recognition, and clustering data streams. Our experiments indicate that our algorithm can be a better alternative
for all compared popular clustering algorithms especially when efficiency is the primary consideration, namely
we drastically improve time and space complexity but retain equal level of accuracy.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is a preliminary and fundamental process for many so-
phisticated systems (Jain, 2010; Kuila and Jana, 2014). Many successful
clustering algorithms has been proposed for different domains of appli-
cation, and people are still searching for more accurate and efficient
algorithms for clustering (Silva et al., 2013; Bifet et al., 2010; Yuwono
et al., 2016), especially for Big Data Analysis (Manyika et al., 2011)
and Data Streams (Silva et al., 2013). In general, the clustering problem
is studied in four different ways (Han et al., 2011): representative-
based clustering, density-based clustering, hierarchical clustering, and
graph-based clustering. Representative-based clustering (Hartigan and
Wong, 1979; Arthur and Vassilvitskii, 2007; Bailey and Elkan, 1994;
Celebi et al., 2013) seeks representative centers to capture the clusters
in the sense that data points in the same cluster are more similar to
each other. Density-based clustering (Kriegel et al., 2011; Amini et al.,
2014) tries to find dense areas of arbitrary shape and typically takes no
consideration on data similarities. In other words, instead of considering

* Corresponding author.
E-mail address: liuzhen@hdu.edu.cn (Z. Liu).

similarity of data points, density-based clustering problems focus more
on the geometric distribution of data in low dimensionality. Hierarchical
clustering algorithms (Murtagh and Legendre, 2014) usually generate
a clustering tree representing the parental relationship among micro
clusters. Graph-based clustering (Linh and Long, 2014) specialized on
graph data and datasets that can be converted into graphs. Among all
these four clustering problems, representative-based clustering is the
most common one and is our focus in this paper.

We primarily focus on improving trade-off between speed and
accuracy for large dataset and conducting applications that can be
benefitted from it. Existing state-of-art algorithms achieved satisfactory
clustering results, such as Affinity Propagation (AP) (Frey and Dueck,
2007), Density Peak Clustering (DP) (Rodriguez and Laio, 2014) and
Dirichlet Process Clustering (DPC) (Blei and Jordan, 2006). However,
these methods are too expensive for even moderate sized datasets. Since
AP and DP are quadratic with respect to both time and space, DPC is
quadratic with respect to dimension, their use is limited to small datasets
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despite accurate. Another kind of clustering algorithms achieves tolera-
ble results and are linear to time, space, and dimension, such as Kmeans
(Hartigan and Wong, 1979; Arthur and Vassilvitskii, 2007; Bailey and
Elkan, 1994), Expectation–Maximization (EM) (Bailey and Elkan, 1994),
Fuzzy C-means (Celebi et al., 2013), Mean Shift (Comaniciu and Meer,
2002), and DP-means (Kulis and Jordan, 2011). For this reason, they are
popularly applied to solve real world problems. Moreover, this kind of
algorithms are easy to scale out for parallel computing (Bradley et al.,
1998; Chitta et al., 2011). However, those algorithms require tens of
iterations to converge. This is fine for moderate sized datasets, but their
performance is drastically worsened when dealing with datasets which
are too large to be fitted into main memory, since they have to load the
entire dataset block by block for each iteration with intensive memory
swaps.

To solve the I/O problem described above, recent researches are
active on Data Streams. In Data Stream Domain, data arrives one by
one with fixed order since the dataset is too large which made random
access unaffordable (Silva et al., 2013; Bifet et al., 2010). This topic can
be trace back to earlier works such as (Zhang et al., 1996; Aggarwal,
2003; O’callaghan et al., 2002) , as well as recent works in density-
based clustering (Amini et al., 2014; Cao et al., 2006; Chen and Tu,
2007) trend discovery (Kranen et al., 2011) and scalability (Bradley et
al., 1998). Sculley (2010) developed a heuristic data stream method to
approximate Kmeans algorithm. Since (Sculley, 2010), more researches
addresses approximating popular algorithms in more efficient manners.
Ackermann et al. (2012) and Fichtenberger et al. (2013) achieved
this by generating a subset of the original data (known as Coreset),
and perform Kmeans++ on the reduced ‘‘Coreset’’. They proved that
clustering centers from the Coreset can approximate the original method
with concrete boundary. Avrithis and Kalantidis (2012) presented a
method to boost assignment time for Gaussian Mixture Model and
consequently an approximation of EM clustering. Gong et al. (2015),
Avrithis et al. (2015) adopted advanced hashing technique for mem-
bership assignment and therefore developed an approximation method
for Kmeans. Obviously, though outperformed their predecessors, these
approximation methods will always be outperformed by their original
versions (algorithms that they are trying to approximate).

Among all the representative-based clustering algorithms, K-means
and its variances are the most commonly used and approximated. The
idea backing these algorithms is known as Expectation–Maximization
(EM) (Bailey and Elkan, 1994). The algorithms take 𝐾 initial centers
and perform expectation and maximization iteratively. The EM theory
guarantees the lower bond of objective function to be non-decreasing
(Bishop, 2006). However, this is far from satisfaction because the goal
is to diminish the gap between lower bond and the global optima.
In this paper, we developed a single pass fast clustering algorithm to
improve the accuracy for large dataset and data streams. We aim at
outperforming popular but expensive algorithms (e.g. Kmeans and EM)
that have been approximated by data stream algorithms, but still runs
as fast as most data stream algorithms.

Our secondary focus is detecting number of cluster automatically
since such information is usually unavailable for very large datasets. For
the most popular algorithms, e.g. K-means++ (Arthur and Vassilvitskii,
2007), EM (Bailey and Elkan, 1994) and Fuzzy C-means (Havens et al.,
2012; Mungle et al., 2013), the number of clusters is pre-defined as a
user-specified parameter. However, in most cases the number of clusters
is what we seek. Detecting number of clusters accurately becomes
more challenging when we expect the algorithm to be efficient. Some
sophisticated clustering algorithms, like Affinity Propagation(AP) (Frey
and Dueck, 2007) and Density Peak (DP) (Rodriguez and Laio, 2014)
and Dirichlet Process Clustering (DPC) (Blei and Jordan, 2006), are
able to find accurate number of clusters automatically, but they are
computationally infeasible for moderate or large datasets. Few fast
clustering algorithms is able to perform clustering without knowing the
number of clusters beforehand. BIRCH (Zhang et al., 1996) is a typical
one which partitions the data into blocks but no natural clustering

pattern can be captured. In this paper, we propose a fast clustering
method that is able to detect the accurate number of clusters and runs
as fast as SreamKM++ while the clustering accuracy is as good as AP
and DP.

In this paper, we propose a representative-based clustering algorithm
to tackle with above problems. The algorithm employs the idea of Artifi-
cial Neural Network such as computing units and weighted connections
between these units. However, our computing unit model (known as a
node or a neuron) is quite different from traditional Artificial Neural
Network. It is a single pass clustering algorithm and the speed can be
fully boosted by parallelization. The general model is non-parametric,
but the proposed Sparse Dynamical Instantiation solved the curse of
dimensionality and makes it linear to data dimension in computation
complexity. Following are the highlights of our algorithm:

(1) Efficiency: we provide better trade-off between speed and accu-
racy than all compared algorithms. Our algorithm achieves state-
of-art clustering accuracy with hundreds of times of speedup.

(2) Ability: our algorithm finds the number of clusters automatically
and provide accurate clustering centers by a single pass of the
dataset.

(3) Novelty: we propose a new Artificial Neural Network model
with entirely new unsupervised training method which makes
Efficiency and Ability possible.

In the rest of this paper, Section 2 discusses the technical detail about
Sparse Self-Represented Network Map and its unsupervised learning
method. Section 3 shows how to use the network to cluster data points.
Section 4 presents the simulations on synthetic data and we apply our
method to 3 real world engineering problems in Section 5. Finally, we
present our findings and conclusions in Section 6.

2. Sparse Self-Represented Network Map for fast clustering

2.1. Network map model and unsupervised training method

In this paper, we designed a grid-structured network for fast clus-
tering. The network is constructed by connected neurons, where each
neuron in the network receives stimulus from data that fall into its
Accepting Field (AF). AF is a continuous subspace of real value which
can be presented as a square in two dimensions or a cubic in three
dimensions. AF can be defined as soft or hard. For hard Accepting Field,
the neuron takes binary stimulation which is 1 if a data point falls into
its accepting field and 0 otherwise. In this paper, we use soft AF. Let
𝑆(𝒙|𝝁𝒊, 𝜎) be the stimulation from data point 𝒙 to neuron 𝑖, we define:
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where 𝝁𝒊 is the center of the accepting field of neuron 𝑖 and 𝜎 is a
parameter controls the width of the accepting field. Each neuron has
its own center while they all sharing a common 𝜎. In other words, the
weight between input data and the network depends on the value of the
data points.

The network is stimulated by data points sequentially where we
denote the 𝑡th data point as 𝒙𝒕. The procedure of processing 𝑡th data
point is known as step 𝑡 or time 𝑡. The activation value 𝑎𝑖(𝑡) is cut down
by 1 in each step no matter it is stimulated or not. Let the output of
neuron 𝑖 at time 𝑡 be 𝑦𝑖(𝑡), then

𝑎𝑖 (𝑡) = 𝑦𝑖 (𝑡 − 1) − 1 + 𝛼 ⋅ 𝑆
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where 𝛼 is a user-specified parameter controls the learning rate and 𝜃
is the upper threshold of the output of a neuron. The active value of
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