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a b s t r a c t

An important predictive maintenance task in modern production systems is to predict the quality of products
in order to be able to intervene at an early stage to avoid faults and waste. Here, we address the prediction
of the most important quality criteria in micro-fluidics chips: the flatness and critical size of the chips (in the
form of RMSE values) and several transmission characteristics. Due to semi-manual inspection, these quality
criteria are typically measured only intermittently. This leads to a high-dimensional batch process modeling
problem with the goal of predicting chip quality based on the trends in these process values (time series). We
apply time-series based transformation for dimension reduction to the lagged time-series space using of partial
least squares (PLS), and combine this with a generalized form of Takagi–Sugeno (TS) fuzzy systems to obtain a
non-linear PLS forecast model (termed as PLS-fuzzy). The rule consequent functions are robustly estimated by
a weighted regularization scheme based on the idea of the elastic net approach. To address particular system
dynamics over time, we propose dynamic updating of the non-linear PLS-fuzzy models using new on-line time-
series data, with the options 1.) adapt and evolve the rule base on the fly, 2.) smoothly down-weight older samples
to increase flexibility of the fuzzy models, and 3.) update the PLS space by incrementally adapting the loading
vectors, where processing is achieved in a single-pass stream mining manner. We call our method IPLS-GEFS
(incremental PLS combined with generalized evolving fuzzy systems). We applied our predictive modeling approach
to data from on-line microfluidic chip production over a time period of about 6 months (July to December 2016).
The results show that there is significant non-linearity in the predictive modeling problem, as the non-linear
PLS-fuzzy modeling approach significantly outperformed classical PLS for most of the targets (quality criteria).
Furthermore, it is important to update the models on the fly with incremental updating of the PLS space and/or
with down-weighting older samples, as this significantly decreased the accumulated error trends of the prediction
models compared to conventional updating. Reliable predictions of flatness quality (with around 10% error) and
of RMSE values and transmissions (with around 15% errors) can be achieved with prediction horizons of up to
4 to 5 h into the future.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation and state of the art

Predictive maintenance relies on real-time monitoring and diagnosis
of system components, and process and production chains (Levitt,
2011). The primary strategy is to take action when items or parts
show certain behaviors that usually result in machine failure, reduced
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performance or a downtrend in product quality. In contrast to classical
quality control and condition monitoring (Montgomery, 2008; Lughofer
et al., 2012), which basically operate in a kind of retrospective and
reactive manner — for instance, by inspecting product parts for atypical
aberrant appearance (Lughofer et al., 2009; Sannen and van Brussel,
2012; Demant et al., 1999) (as in Weigl et al., 2016; Pawell et al.,
2015; Schwarzbauer et al., 2013 for microfluidic chips), predictive
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maintenance goes a step further and predicts impending problems at an
early stage. The goal is to identify problems as early as possible (Aumi
et al., 2012; Mobley, 2002) in order to have sufficient time to react
properly (manually Wang and Gao, 2006 or automatically Permin et
al., 2016), and to prevent severe quality downtrends and even risks in
subsequent processing stages. This can bring considerable cost savings
due to significantly reduced system downtime and reduced rejected
parts. This also the case in microfluidic chip production, especially when
taking into account that (1) the amount of defect chips (waste) is greatly
reduced and (2) chip quality measurements require special equipment
and are time intensive, as they are often manually conducted. Predictive
maintenance in microfluidic chip production is thus concerned with the
prediction of quality criteria that indicate the condition of the chips
(e.g., shape, flatness and size), based on current process states (Wang
and Gao, 2006) occurring in two essential production stages: injection
molding and the bonding processes (Attia et al., 2009).

Techniques from the fields of forecasting (Box et al., 1994) and
prognostics (Ekwaro-Osire et al., 2017) form the core components
in predictive maintenance systems. These techniques can build on
analytical (Liu, 2008), knowledge-based (Fonseca, 0000) or purely data-
driven models (Liao and Wang, 2013) that map process trends and states
to some quality information content (e.g., the health index) (Adams,
2007). While both analytical and knowledge-based models require
time-intensive derivation and development phases and thus significant
man-power and furthermore often are often restricted to very specific
applications and product settings (Kluska, 2009), data-driven models
can be generated more or less automatically (with some support from
machine learning experts) from data (typically time-series-based process
data) recorded at the system and stored. In the context of time-series
data, the particular data-driven models are usually termed as time-series
based prediction or forecast models (Gaxiola et al., 2015).

Several approaches have been proposed for quality control and
predictive maintenance in chip production, for instance, in Pawell et al.
(2015) and Preininger and Sauer (2003). These rely on analytical and
knowledge-based models, which require adequate (physical or chemi-
cal) knowledge of the (relations/dependencies in the) system and whose
derivation is very time- and effort-intensive for experts; further, they
are not sufficiently flexible to automatically adapt to (on-line) process
changes and often require complete re-development phases for different
product settings, variants and/or charges. Another, more automated
approach that addresses the supervision of process parameters from
injection molding machines was proposed in Park et al. (2016). It
applies basic statistical concepts, such as linear regression analysis, to
historical data, but integration of more complex soft computing and
machine learning models to capture model non-linearities in the system
is insufficient, and it does not address any changes in characteristics
of the production process over time. Similar considerations apply to
the approaches in Zhang et al. (2015), which relies on linear principal
component regression (PCR) that are built once and not adapted over
time to address system dynamics. Other approaches, such as those
presented in Fu et al. (2011); Yu et al. (2014), perform an influence
analysis of process parameters on product quality, but do not provide
a real predictive modeling procedure for forecasting future quality or
recognizing problems at an early stage. In Kano and Nakagawa (2008),
conventional partial least squares regression (PLSR) models are used
for transforming the high-dimensional process value space in order to
reliably predict product quality in steel industry; again, these models can
reflect only linear behaviors sufficiently well and cannot autonomously
adapt to process changes and system dynamics.

Dynamics are an important aspect of chip production systems, as
they can become significant due to varying process cycles, charges,
events or even non-stationary environmental influences (such as tem-
perature and air pressure changes). In fact, in case of micro-fluidics chip
production, we analyzed this dynamics (see the experimental results
section) and realized that the predictive performance of static models
trained once on training samples deteriorate significantly after several

weeks. Such cases typically require model maintenance cycles (Wise
and Roginski, 2015), in which the model is re-calibrated based on data
collected from the new (changed) states/influences. Ideally, such model
updates should be achieved automatically and on-line in order to avoid
time-consuming off-line model re-design phases that require an expert
in (data-driven) modeling. This can be enabled by self-adaptive model
adaptation techniques, such as incremental learning of parameters and
on-the-fly evolution of structural components. None of the approaches
discussed above have such techniques embedded in their quality control
and predictive models.

Further, (longer) trends of (measured) process values are usually
required to make reliable predictions of product (chip) quality with a
sufficiently distant horizon. This is because individual samples may be
too affected by noise and may not contain the necessary information
over time for accurately predicting a particular quality. Hence, we are
faced with a high-dimensional time-series-based forecast problem, since
entire trends of time series that reflect the progress of the process affect
the quality of future chips. As the quality of the chips are recorded
intermittently, it leads to a batch process forecast modeling problem,
see Section 2. Appropriate dimension reduction techniques (Carreira-
Perpinan, 1997) are to be used to avoid the curse of dimensionality
(Hastie et al., 2009), because high input dimensionality is a major cause
of over-fitting. This becomes especially severe for small sample sizes, as
is usually the case in our application, since we are dealing with quality
criteria sampled periodically only a few times per day (leading to around
a 100 samples in total per month). To properly address system dynamics
in the form of changes in the influence/importance of variables for a
reliable quality prediction, an appropriate combination of (incremental)
dimension reduction and model adaptation is required, which can also
deal with batch process modeling problems.

1.2. Our approach

From the application point of view, the main novelty of our ap-
proach lies in its holistic approach towards delivering a highly perfor-
mant, robust and purely data-driven (i.e., general) solution for predict-
ing/forecasting the most important quality criteria in on-line micro-chip
production (with certain dynamics). As such, our method is designed to
handle important general and domain-specific complications associated
with data-driven modeling like:

∙ A rather prohibitive cost of (manually) sampling and analyzing
new target data (i.e., quality criteria) that strongly favors predic-
tion models based on the online (single-pass) learning paradigm.

∙ A very complex modeling environment that is dynamic and is
also likely to feature non-linear targets.

∙ A very high number of process values (i.e., read-only/diagnostics
information) that can be inexpensively and inherently measured
but are not assured to be useful for modeling the targets.

It is noteworthy that the first two expected complications form an
apparent modeling predicament as (i) a sparser sampling strategy can
obfuscate the true dynamics and non-linearity of a production process
and (ii) a highly complex and dynamic production process should
be more extensively sampled in order to produce good (i.e., usable)
prediction models. Our approach aims to efficiently (i.e., automatically
and without expert-based supervision) make use of the continuously
recorded process values and on-line updates in order to accommodate
on the one side the dynamics and complexity of the production process
as well as the cost-efficient sampling requirements on the other side.

In order to effectively tackle the aforementioned challenging char-
acteristics of the micro-chip production process, the predictive mainte-
nance strategy we propose is grounded in five major aspects that are
motivated both by strong theoretical and practical considerations:

132



Download English Version:

https://daneshyari.com/en/article/6854275

Download Persian Version:

https://daneshyari.com/article/6854275

Daneshyari.com

https://daneshyari.com/en/article/6854275
https://daneshyari.com/article/6854275
https://daneshyari.com

