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a b s t r a c t

Recent studies have shown the ability of transhumeral amputees to generate surface electromyography (sEMG)
patterns associated to distinct phantom limb movements of the hand, wrist and elbow. This ability could improve
the control of myoelectric prostheses with multiple degrees of freedom (DoF). However, the main issue of these
studies is that these ones record sEMG from sites that cannot always be integrated in a prosthesis socket. This
study aims to evaluate the classification accuracy of eight main upper limb phantom movements and a no
movement class in transhumeral amputees based on sEMG data recorded exclusively on the residual limb. A sub-
objective of this study is to evaluate the impact of kinematic data on the classification accuracy. Five transhumeral
amputees participated in this study. Classification accuracy obtained with an artificial neural network ranged
between 60.9% and 93.0%. Accuracy decreased if the number of DoF considered in the classification increased,
and/or if the phantom movements became more distal. Adding a kinematic feature produced an average increase
of 4.8% in accuracy. This study may lead to the development of a new myoelectric control method for multi-DoF
prostheses based on phantom movements of the amputee and kinematic data of the prosthesis.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Upper limb amputation causes substantial functional impairments
for patients, which increases as the level of amputation is located higher
up the arm (Gaine et al., 1997). Indeed, most activities of daily living,
such as tying shoelaces, opening a bottle, and buttoning a shirt, are
complex and are hard to accomplish with only one fully functional
arm. However, some amputees still choose to wear only a cosmetic
prosthesis, without any functional utility, even though active prostheses
are nowadays capable of restoring some functions, but these ones are
sometimes too unnatural to use (Pulliam et al., 2011).

The two predominant types of active prostheses for transhumeral
amputees are body-powered and myoelectric (Carey et al., 2015). In
body-powered prostheses, a functional body harness allows the amputee
to actuate the prosthesis by performing specific shoulder motions. In
contrast, myoelectric prostheses are controlled by the surface elec-
tromyography (sEMG) signals produced by the residual muscles of the
amputee. In some cases, there can be a combination of both options:
a body-powered elbow with a myoelectric wrist and hand. While
body-powered prostheses provide limited functionality, myoelectric
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prostheses have the potential to offer intuitive control and could act
on multiple degrees of freedom (DoF).

Current clinical strategies for myoelectric control are based on direct
control, which does not allow intuitive and simultaneous control of
multiple DoF prostheses (Young et al., 2013). Direct control is based
on the amplitude of two antagonist muscles, such as the biceps brachii
and the triceps brachii, and acts on a single DoF. For transhumeral am-
putees, at least three DoF prostheses are necessary to maintain minimal
functionality: elbow flexion–extension, forearm pronation–supination
and hand open–close. Moreover, a fourth DoF, wrist flexion–extension,
should also be integrated in myoelectric prostheses, considering it is
an area of dissatisfaction for users (Biddiss et al., 2007). Simultaneous
control of these four DoF is almost impossible using a direct control
strategy since transhumeral amputees do not possess enough indepen-
dently controllable muscles left in their residual limb (Parker et al.,
2004). To overcome this problem, the preferred strategy is to employ
co-contraction of the muscles or hardware switches to move from one
DoF to another (Scheme and Englehart, 2011). Hence, the dexterity of
control is limited, slow, and counterintuitive, which explains the low
acceptance of myoelectric prosthesis (Biddiss et al., 2007; Carey et al.,
2015).
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The actual limitations of the direct control strategy have motivated
the use of a pattern recognition-based control (Hudgins et al., 1993).
Pattern recognition requires that more information must be extracted
from the residual muscles. To do so, it is recommended to use multiple
channels of surface electromyography (sEMG) and to use a feature set
that extract as much information as possible from the sEMG signals
(Englehart and Hudgins, 2003). Feature extraction aims to extract the
valuable information that is hidden in sEMG signal (Phinyomark et al.,
2013). The extracted features are then processed by a classifier, which
role is to decide to which class the information belongs. For myoelectric
control, each class corresponds to a single movement of the prosthesis.

Several studies successfully used a pattern recognition approach to
classify upper limb movements (Englehart and Hudgins, 2003; Hargrove
et al., 2007; Herle et al., 2012; Pulliam et al., 2011; Young et al.,
2013). However, few of them were realized on actual transhumeral
amputees (Young et al., 2013; Hudgins et al., 1993; Tkach et al., 2012).
This is a major shortcoming as it is known that EMG activity in the
residual limb differs from the one in the intact limb (Reilly et al., 2006).
Moreover, there is more interest for amputees who underwent targeted
muscle reinnervation (TMR) surgery (Kuiken et al., 2007) because this
procedure allows to transfer residual arm nerves to alternative muscles
sites, increasing the number of sites for sEMG recordings. However,
the potential risks associated with TMR are considerable: permanent
paralysis of the target muscles, development of painful neuromas and
recurrence of phantom limb pain (Kuiken et al., 2007). Therefore, it
is crucial to assess the accuracy of a pattern recognition approach on
actual transhumeral amputees who did not undergo TMR surgery.

Recent studies have shown that transhumeral amputees can produce
different muscle activation patterns that are related to distinct phantom
movements and that physiologically inappropriate muscles can produce
phantom movements required to myoelectric control (Gade et al., 2015;
Jarrasse et al., 2016). Indeed, it is known that multiple neuromuscular
reorganizations occur after the amputation (Cohen et al., 1991) and that
the primary motor cortex can still send motor commands to the missing
limb (Mercier et al., 2006). Moreover, there is a high proportion of upper
limb amputees that experience phantom limb sensations (De Graaf
et al., 2016). This ability could improve the control of multiple DoF
myoelectric prostheses without undergoing muscular re-innervation
surgery. However, the main issue of these studies is that these ones
record sEMG from sites that cannot always be integrated in a prosthesis
socket, such as shoulder, back, and pectoralis muscles.

Latest developments on myoelectric prostheses propose to combine
myoelectric signal with other sensory or biological signals to improve
the control of prostheses (Madusanka et al., 2015). These additional
inputs can come from electroencephalography (Bell et al., 2008), elec-
trocorticography (Kubánek et al., 2009), foot pressure sensors (Resnik
et al., 2014), vision (Madusanka et al., 2015), and inertial measurement
units (Fougner et al., 2011a). Among these, inertial measurement
units, such as accelerometers, require the simplest hardware and can
easily be integrated at different locations on a prosthesis, giving pre-
cious information about its orientation, speed and acceleration. This
kinematic information, combined with sEMG features, could improve
the accuracy of current pattern recognition classifiers (Fougner et al.,
2011b; Radmand et al., 2014).

In this study, we evaluate the accuracy of a state-of-the-art classifier
to classify eight upper limb phantom movements and a no movement
class in transhumeral amputees using sEMG and kinematic features.
sEMG data were recorded exclusively from sites that can be integrated
in a prosthesis socket to facilitate the transfer in actual prostheses.
Therefore, no sEMG was recorded from the deltoid, trapezoidal, back or
pectoralis muscles, as it was the case in most recent studies investigating
upper limb phantom movements (Gade et al., 2015; Jarrasse et al.,
2016). The impact of kinematic data on classification accuracy was also
evaluated.

Fig. 1. Placement of (a) 6 sEMG channels and (b) 10 retroreflective markers on one
transhumeral amputee.

2. Methods

2.1. Participants

Five participants with unilateral traumatic transhumeral amputation
volunteered to participate in the study (Table 1). Participants provided
informed consent and permissions to publish photographs. The study
was approved by the Research Ethics Board of Ste-Justine University
Hospital Center, Montreal, Canada.

2.2. Data acquisition

Six sEMG channels equally spaced around the stump (Fig. 1a) were
recorded for each participant using the wireless FreeEMG300 system
(BTS, Milan, Italy) and BTS EMG-Analyzer (BTS, Milan, Italy) software,
with the following specifications: sampling frequency: 1 kHz; gain:
476.5; CMRR>110 dB; input impedance >10 GOhm; high-pass pre-
filtered 7.32 Hz −20 dB⋅s−1; 16-bit resolution. The skin overlying the
electrode sites was scrubbed using 70% isopropyl alcohol pads to reduce
electrode resistance and disposable self-adhesive bipolar circular elec-
trodes (Ag/AgCl, recording diameter, 10 mm; center-to-center distance,
24 mm; Covidien, Mansfield, USA) were used for sEMG recordings.

Kinematics data were recorded by a 12-camera 3D motion analysis
system (T40Sx VICON, Oxford) at a sampling frequency of 100 Hz.
Ten retro-reflective markers were placed on the following anatomical
landmarks of the intact limb (Fig. 1b), based on the work of Lait-
enberger et al. (2014): angulus acromialis, acromioclavicular joint,
lateral epicondyle, medial epicondyle, ulnar styloid, radial styloid, 2nd
metacarpal distal, 5th metacarpal distal, 2nd metacarpal proximal and
4th metacarpal proximal.

Eight upper limb phantom movements, namely elbow flexion (EF),
elbow extension (EE), forearm pronation (FP), forearm supination (FS),
wrist flexion (WF), wrist extension (WE), hand open (HO) and hand
close (HC), plus a ‘‘no movement’’ (NM) were included in the experi-
ment. Participants sat on a chair, unconstrained, during the recordings.
sEMG and kinematic data were recorded in eight consecutive trials. For
each trial, one of the 8 phantom movements was randomly chosen.
Participants were instructed to produce medium, constant contraction
to the best of their ability in the desired direction of motion starting
from an initial position. Participants used mirror movements of their
intact limb to aid in attempting movements with their residual limb
(Jarrasse et al., 2016). The movement was repeated twice and held for 4
s. There was a 3 s resting period between consecutive movements where
participants would return to the starting position, which accounted for
the NM. All trials were repeated three times, for a total contraction time
of 24 s per phantom movement and of 72 s of NM. Ample rest periods
were provided between each trial to prevent fatigue. Fig. 2 shows an
example of the acquired signals.

154



Download	English	Version:

https://daneshyari.com/en/article/6854278

Download	Persian	Version:

https://daneshyari.com/article/6854278

Daneshyari.com

https://daneshyari.com/en/article/6854278
https://daneshyari.com/article/6854278
https://daneshyari.com/

