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a b s t r a c t

This paper tackles the problem of model identification for monitoring of non-linear processes using evolving fuzzy
models. To ensure a high production quality and to match the economic requirements, industrial processes are
becoming increasingly complicated in both their structure and their degree of automation. Therefore, evolving
systems, because of their data-driven and adaptive nature, appear to be a useful tool for modeling such complex
and non-linear processes. In this paper the identification of evolving cloud-based fuzzy models is treated for
process monitoring purposes. Moreover, the evolving part of the algorithm was improved with the inclusion of
some new cloud-management mechanisms. To evaluate the proposed method two different processes, but both
complex and non-linear, were used. The first one is a simulated Tennessee Eastman benchmark process model,
while the second one is a real water-chiller plant.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In general, modern industrial processes are typical dynamic systems
with complex structures and frequently operating under a variety of
environmental conditions. For successful and optimal operation of any
process, it is important to detect, or even better, to predict undesired
events as early as possible. Due to this, model-based methods play a cru-
cial rule in the field of process monitoring and fault detection (Isermann,
1984). These methods can be used for measurable signals prediction
and for non-measurable parameters estimation. The method proposed
in this paper is used for both, prediction of measured signals and
for estimation of non-measurable parameters (performance production
indicators, pPIs).

The methods of process monitoring and fault diagnosis can be
classified into three general categories: methods based on mathemati-
cal/physical knowledge of the process; statistical data-driven methods;
and data-driven model-based methods.

The methods based on the mathematical/physical knowledge of
the process have been successfully applied in different industrial ap-
plications (Isermann, 2004; Gertler, 1998; Venkatasubramanian et al.,
2003b; Campos-Delgado and Espinoza-Trejo, 2011; Huang et al., 2012;
He et al., 2013). This type of methods use an a priori knowledge based
on fundamental understanding of the physics of the process. Beside their
wide-range usage (Isermann, 2011), the methods have several disad-
vantages. They are limited to linear models and in some cases to very
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specific nonlinear models (using linear approximation). Other problems
are disturbance simplification, parameter drifts, a priori estimation of
classification errors, adaptability to varying process’ conditions, etc.

Due to the information revolution and data expansion new data-
driven techniques have been investigated and developed. Data-based
schemes for system monitoring mainly concentrate on the data collected
from the processes. Statistical approaches (Qin, 2003) use this data to
extract the knowledge and to detect the faults. Principle component
analysis (PCA) (Li et al., 2000; Gertler and Cao, 2004; Chen et al.,
2016) and partial least squares (PLS) (Li et al., 2010; Zhang et al.,
2010; Chen et al., 2016) are two basic techniques. More recently,
independent component analysis (ICA) (Zhang and Qin, 2008; Tsai
et al., 2013) has received a lot of attention and has seen great success
in practice and (Venkatasubramanian et al., 2003a; Yin et al., 2014)
have provided a review of the basic statistical data-driven approaches
for process monitoring. In general, statistical data-based schemes can
effectively monitor only the industrial processes when they operate
under stationary conditions (Yin et al., 2014). However, this type of
methods are not suitable to handle the complex process dynamics under
changing environmental conditions.

The applicability of statistical data-based methods can be improved
by considering the system dynamics (Chapter 3 in Simani et al. (2003)).
Fault detection methods which combine the data-driven with model-
based approaches, have been presented by Precup et al. (2015). As

https://doi.org/10.1016/j.engappai.2017.10.020
Received 12 December 2016; Received in revised form 12 September 2017; Accepted 27 October 2017
Available online 21 November 2017
0952-1976/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2017.10.020
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2017.10.020&domain=pdf
mailto:goran.andonovski@fe.uni-lj.si
https://doi.org/10.1016/j.engappai.2017.10.020


G. Andonovski et al. Engineering Applications of Artificial Intelligence 68 (2018) 214–221

dynamic models are required, the evolving-based identification methods
play an important role (Lughofer, 2011, 2015). In this case the process
model is not known a priori but is identified recursively from the
data streams. Furthermore, the acquired model could be used for the
prediction of the future system behavior.

The evolving methods can be divided into different categories
according to their structure, ability of learning, level of autonomous
adapting, etc. In the field of fault detection and process monitoring,
most of the evolving methods use Takagi–Sugeno (Takagi and Sugeno,
1985) type of fuzzy structure to construct the process model (Lughofer
and Guardiola, 2008; Chivala et al., 2010; Petković et al., 2012; Lemos
et al., 2013; El-Koujok et al., 2014; Dovžan et al., 2015). In this methods
the membership function (in a form of data clusters) usually follow the
Gaussian distribution using a predefined distance measure.

By introducing the new simplest form of fuzzy system (Angelov
and Yager, 2011), named AnYa, a new branch of evolving methods
have been developed. AnYa fuzzy system uses a non-parametric (cloud-
based) antecedent part which does not require any explicit definition
of the membership function or even a prior assumption of its form. The
membership functions and the evolving mechanisms are based on the
relative density of the current data according to the existing clouds.
The data clouds represent sets of previous data points with similar
properties. Contrary to the clusters, clouds do not have any boundaries
and they directly and exactly represent all previous data samples. More
information about differences between the data clouds and the clusters
can be found in (Angelov and Yager, 2011).

The AnYa based methods (Angelov et al., 2013; Costa et al., 2013;
Rosa et al., 2014) use local and global density to evolve the structure,
while the methods in (Škrjanc et al., 2014; Blažič et al., 2014) use just
local density with simple threshold to evolve the structure. The proposed
method in this paper represents an extension of the latter methods with
introducing new evolving mechanisms.

Based on the AnYa fuzzy system a fault detection method was
proposed by Costa et al. (2014a, b, 2015) which uses a recursive density
estimation to detect novelty in a statistical manner (without including
any dynamics of the process into the model).

For the purpose of process monitoring in this paper we propose
an improved evolving fuzzy model based on AnYa fuzzy system. This
method uses the ability of evolving the fuzzy structure to cope with
changing environmental conditions. On the other hand an NARX model
is used to deal with the process dynamics. This is the main advantage
over the existing process monitoring methods based on AnYa fuzzy
system (Costa et al., 2015; Precup et al., 2015). The new evolving
mechanisms are able to protect from addition of new clouds (rules)
based on outliers. Moreover, a new mechanism for removing the ‘‘less
active’’ and the ‘‘less informative’’ clouds is introduced. The activity is
a property of the cloud and it is defined as a relative number of data
samples associated with a particular cloud from its creation. On the
other hand, the second removing mechanism deletes the clouds that has
obtained less information and are less active in comparison with the
other clouds.

The proposed cloud-based model, as a tool for estimation of the
non-measurable parameters, is tested on a simulated input/output data
acquired from the Tennessee Eastman (TE) (Downs and Vogel, 1993)
benchmark process model. The non-measured production objectives of
the systems are defined through the production performance indicators
(pPIs), namely, Cost, Production and Quality (Glavan et al., 2012). The
models for these three pPIs are identified with the proposed fuzzy-
cloud-based method and the results are compared with the eFuMo
identification tool proposed by Dovžan et al. (2012, 2015) and with the
NNSYSID neural network tool (Norgaard et al., 2000). The main goal
is to monitor the process by detecting potential undesired future trends
based on the estimated production performance indicators.

A practical example to test the usability of the proposed method is a
real water-chiller plant (WCP) located in a local factory. The proposed
method is used as a model identification tool for undesired events

prediction. Using the real data, two variables are identified: the WCP’s
power production and the factory’s power consumption. The goal of
monitoring these indicators is to predict the future behavior of the
system in order to prevent unnecessary short-time start-ups of the water
chillers. This can improve the overall efficiency of the whole system.

The paper is organized as follows. In Section 2 the cloud-based
identification method is presented, while in Section 3 an improved
evolving mechanism for adding and removing clouds is presented.
Section 4 introduces the experimental results for a Tennessee Eastman
process, while in Section 5 the practical results for a water chiller plant
are presented. Finally, in Section 6, the main ideas and results are
summarized.

2. Cloud-based identification of a dynamic system

2.1. Fuzzy-rule-based model

Fuzzy systems are general approximation tools for the modeling of
non-linear dynamic processes. In this paper we use a fuzzy-rule-based
system with a non-parametric antecedent part presented by Angelov and
Yager (2011). The main difference is the simplified antecedent part that
relies on the data relative density. The rule-based form of the 𝑖th rule is
defined as:

𝑖 ∶ IF (𝒙𝑓 ∼ 𝑋𝑖) THEN 𝑦𝑖 = 𝑓 𝑖(𝒙𝑓 ) (1)

where the data sample (regression vector) 𝒙𝑓 (𝑘) = [𝑦(𝑘 − 1),… , 𝑦(𝑘 −
𝑛𝑎), 𝑢(𝑘−1),… , 𝑢(𝑘−𝑛𝑏)] includes the delayed system inputs and outputs
. The operator ∼ is linguistically expressed as ‘is associated with’, which
means that the current data 𝒙𝑓 is related to one of the existing clouds
𝑋𝑖 according to the membership degree (the normalized relative density
of the data). The input and output orders are denoted as 𝑛𝑎 and 𝑛𝑏,
respectively. Note that the input 𝑢(𝑘) does not have an immediate
influence on the output 𝑦(𝑘). The partial NARX model of the 𝑖th rule
is defined as:

𝑓 𝑖(𝑘) = 𝜽𝑖𝑇𝝍(𝑘) (2)

where the vector 𝝍(𝑘) =
[

𝒙𝑓 , 1
] 𝑇 consists of the regression vector

𝒙𝑓 (used for partitioning the data space) to which we usually add a
regressor 1. The vector of parameters for the 𝑖th cloud (rule) is denoted
as 𝜽𝑖 =

[

𝑎𝑖1,… , 𝑎𝑖𝑛𝑎 , 𝑏
𝑖
1,… , 𝑏𝑖𝑛𝑏 , 𝑟

𝑖
]

𝑇 . Once we have declared all the
parameter vectors 𝜽𝑖 for each cloud (𝑖 = 1,… , 𝑐) we can define the
output of the system in a compact matrix form:

𝑦(𝑘) =
𝑐
∑

𝑗=1
𝛽𝑗 (𝒙𝑓 )𝜽𝑗

𝑇𝝍(𝑘) = 𝜷𝑇 (𝒙𝑓 )𝜣𝑇𝜳 (𝑘) (3)

where 𝑐 is the number of existing clouds 1 (fuzzy rules), 𝜷𝑇 (𝒙𝑓 ) =
[

𝛽1, 𝛽2,… , 𝛽𝑐
]

is the vector of normalized relative densities determined
between the current data 𝒙𝑓 and all the existing clouds, and 𝜷𝑇 will
be discussed in the next subsection. The matrix 𝜣 =

[

𝜽1, 𝜽2,… ,𝜽𝑐
]

∈
R(1+𝑛𝑎+𝑛𝑏)×𝑐 contains the vectors of the parameters for all the existing
clouds.

2.2. Identification of the antecedent part

In this subsection we will describe an identification method for
the non-parametric antecedent part of the fuzzy-rule-based system
AnYa (Angelov and Yager, 2011). The method starts with zero fuzzy
rules (clouds) and the first cloud is initialized with the first data 𝒙𝑓
received. For each of the following data the normalized relative densities
𝛽𝑖 are calculated and then the current data is associated with one
of the existing clouds (according to the maximum density 𝛽𝑖, where

1 We use the term ‘existing clouds’ because this method is an evolving one and the
number of clouds changes when some requirements are fulfilled.
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