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a b s t r a c t

A major challenge in similarity/distance learning is attaining a strong measure which is close to human notions
of similarity. This paper shows why the consideration of data distribution can yield a more effective similarity
measure. In addition, the current work both introduces a new scalable similarity measure based on the posterior
distribution of data and develops a practical algorithm that learns the proposed measure from the data. To
address scalability in this algorithm, the observed data are assumed to have originated from low dimensional
latent variables that are close to several subspaces. Other advantages of the currently proposed method include:
(1) Providing a principled way to combine metrics in computing the similarity between new instances, unlike
local metric learning methods. (2) Automatically identifying the real dimension of latent subspaces, by defining
appropriate priors over the parameters of the system via a Bayesian framework. (3) Finding a better projection to
low dimensional subspaces, by learning the noise of the latent variables on these subspaces. The present method
is evaluated on various real datasets obtained from applications, such as face verification, handwritten digit
and spoken letter recognition, network intrusion detection, and image classification. The experimental results
confirm that the proposed method significantly outperforms other state-of-the-art metric learning methods on
both small and large-scale datasets.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Similarity/Distance plays a key role in many machine learning and
pattern recognition tasks, such as classification, clustering, Content-
Based Information Retrieval (CBIR), recommender systems (Guo et
al., 2016), visual tracking (Jiang et al., 2012; Li et al., 2012), image
annotation (Guillaumin et al., 2009), web page archiving (Law et al.,
2012), and cartoon synthesis (Yu et al., 2012) to name a few (Bellet et
al., 2014). For many applications, standard measures, such as Euclidian
distance or cosine similarity, are neither rich nor flexible enough to
capture the human notion of similarity. Often, a better similarity mea-
sure can be learned from data. Metric learning algorithms aim to learn
a distance function from data which brings semantically similar data
items closer and keeps the conceptually dissimilar ones at a distance.
Despite their success, metric learning algorithms are still restricted from
the following aspects:

1- These algorithms assume that an optimal distance function takes
the form of a Mahalanobis distance in input or the feature space
induced by a kernel. However, this measure is not versatile
enough to model human notions of similarity.
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2- Mahalanobis methods require learning 𝑂(𝑑2) parameters where
𝑑 denotes the dimension of data. On the other hand, kernel
methods require𝑂(𝑛2) parameters where 𝑛 represents the number
of training instances. Thus, these methods are infeasible on both
high dimensional and large databases.

3- Local metric learning methods learn several metrics across the
data manifold. However, these approaches do not provide a
principled way to combine the learned metrics when computing
the distance between new examples.

4- State-of-the-art approaches aim only to learn a low-rank linear
or nonlinear projection and so ignore the noise of data on low
dimensional latent spaces.

5- Hyperparameters of the system are often found by ad-hoc ap-
proaches, such as cross-validation, which required much time to
learn from training data.

To deal with these issues, this paper initially presents a better notion
of similarity by considering the structure and distribution of data. Then,
a new similarity measure is introduced based on the posterior distribu-
tion of data. The present work also develops a practical algorithm that
learns the proposed similarity measure from data. To address scalability
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in this algorithm, it is assumed that data are generated from latent
variables that are close to one or more low dimensional manifolds.
The current method is named ‘‘Sparse Similarity Learning based on
Posterior distribution (SSLP)’’. When compared to similar works, its
other advantages are:

1- SSLP learns the noise of data on latent subspaces so as to find
more efficient projection matrices from an input space to low-
dimensional latent subspaces.

2- Unlike available local metric learning methods, SSLP provides a
principled way to combine metrics in computing the similarity
between new observations.

3- The optimal values of most hyperparameters in the currently
proposed model are automatically adjusted by the introduced al-
gorithm, thus reducing training time and rendering the algorithm
practical for many real applications.

4- SSLP finds an optimal sparse solution that increases the general-
ization of the proposed model and decreases its evaluation time
on new data points.

The rest of the current paper is organized as follows: Section 2
reviews related works. In Section 3, the proposed similarity measure
and its probabilistic model are presented. The learning algorithm is
developed in Section 4 and, in Section 5, some theoretical results are
established which guarantee generalization of the proposed method. A
comparison with state-of-the-art methods and experimental results are
reported in Section 6. Finally, Section 7 concludes with remarks and
recommendations for future work.

2. Related works

Distance metric learning is an active research field in the machine
learning community. Many studies in this area have focused on finding
the optimal Mahalanobis metric, which is equivalent to learning an op-
timal linear projection. Seminal Mahalanobis works include MMC (Xing
et al., 2003), LMNN (Weinberger and Saul, 2009), ITML (Davis et al.,
2007), BoostMetric (Shen et al., 2012), SERAPH (Niu et al., 2014) and
MSML (Qian et al., 2015a). In order to enforce the positive-semi-definite
(p.s.d.) constraint, Mahalanobis metric learning algorithms need a full
eigenvector decomposition at each stage with cost 𝑂(𝑑3), where 𝑑
represents the dimension of the input data. Hence, these methods are not
scalable for high dimensional datasets. To address this problem, ITML
uses the 𝑙𝑜𝑔 𝑑𝑒𝑡 regularization term that provides an automatic way to
satisfy the p.s.d constraint. In MSML, dual random projection is proposed
for high dimensional metric learning. This method first estimates dual
variables on the low dimensional space of a random projection matrix
and then employs these variables, along with input data, to construct
a metric in the original space. In problems with a large number of
constraints, MSML divides the original problem into multiple stages. At
each stage, only a small subset of constraints is selected by sampling
methods and the current solution is updated only by these constraints.

Some approaches directly learn the low-rank projection matrix 𝑾 ∈
R𝑑×𝑝 (Goldberger et al., 2005; Xiang et al., 2008; Soleymani and
Shouraki, 2010; Der and Saul, 2017; Wang et al., 2014; Perrot and
Habrard, 2015). In the case of 𝑝 < 𝑑, these methods reduce the
dimensionality of the input data. In applications in which data lie close
to a latent manifold with a dimensionality of 𝑝 ≪ 𝑑, these methods show
better scalability with respect to the dimensionality of data. Xiang’s
method (Xiang et al., 2008) is a major work in this area which aims
to find a projection matrix that both maximizes the sum of the square
distances between dissimilar data items and also minimizes the sum of
the square distances between similar data items. Here, the algorithm
finds an optimal metric by utilizing an efficient binary search method.
This method is extended by Wang et al. (2014) using the 𝑙1 norm.
However, because the introduced objective function is very sensitive
to the initial value of the projection matrix, this method uses Xiang’s
method to initialize the solution.

LCA (Der and Saul, 2017) is a probabilistic model proposed for
metric learning in latent space. Although this method learns the noise of
data on latent subspaces, this noise is simply ignored when computing
the distance at evaluation time. LCA is also based on the Maximum
Likelihood that is prone to overfitting, especially for small and high
dimensional training sets.

For complex datasets, where the discriminatory power of input
features varies locally, Mahalanobis and linear projection methods are
not flexible enough to fit the true distance function in different regions
of input space. Local metric learning addresses this issue by learning one
metric for each region of the input data (Weinberger and Saul, 2009;
Verma et al., 2012; Wang et al., 2012) to the extreme of determining
one metric for each training example (Noh et al., 2010; Mu et al., 2013;
Fetaya and Ullman, 2015). For example, MM_LMNN (Weinberger and
Saul, 2009) learns one metric per class. To ensure consistency when
computing distances in different regions, this method simultaneously
learns all the metrics. As the objective function in MM_LMNN does not
have any regularization term, 30% of training data is considered as a
validation set so as to avoid overfitting.

In PLML (Wang et al., 2012), for each training example, a local met-
ric is learned as a linear combination of basis metrics 𝑴𝒃𝟏,𝑴𝒃𝟐,… ,𝑴𝒃𝒎,
where 𝑴𝒃𝒊 is a metric associated to the anchor point 𝒖𝒊 obtained by the
𝑘-means clustering algorithm. The proposed weight learning algorithm
tries to learn a metric function that varies smoothly along the data
manifold. PLML has numerous hyperparameters to be adjusted. It also
requires a full eigenvector decomposition at each stage, making it
inappropriate for high dimensional metric learning. To address these
issues, SCML (Sparse Compositional Metric Learning) (Shi et al., 2014)
uses ran𝑘-1 p.s.d matrices as a basis. In other words, metric 𝑴𝒙,
associated with training example 𝒙, is defined as:

𝑴𝒙 =
𝑚
∑

𝑖=1
𝑤𝑖𝒃𝒊𝒃𝒕𝒊. (1)

The basis set 𝑩 = {𝒃𝟏, 𝒃𝟐,… , 𝒃𝒎} is generated using the Fisher discrimi-
nant analysis at several local regions. This approach automatically satis-
fies the p.s.d constraint. However, to achieve a reasonable performance,
the number of bases should be large enough, so that the time of the
weight learning algorithm is high for large scale problems. The optimal
solution is also limited to a linear combination of the basis elements
which are fixed during optimization.

The main limitation in these studied local metric learning methods is
the inability of these methods to combine learned metrics in a principled
way so as to compute a distance between two new data points. Also, for
training points 𝒙,𝒙′, the distance function is asymmetric and depends
on the local metric used in computing the distance.

3. The probabilistic model

As stated, consideration of the structure and distribution of data
often yields a better notion of similarity. For example, in Fig. 1, data
items 𝒙 and 𝒛 are in the same subspace while 𝒚 belongs to the other
subspace. Although, by Euclidean measure, 𝒙 is closer to 𝒚 than 𝒛, 𝒙
and 𝒛 are more similar considering the structure and distribution of data.
The proposed method aims to define its similarity measure based on this
observation. For this purpose, some notations are introduced.

In many real applications, data are generated from latent variables
that are near to several low-dimensional subspaces. Let 𝐾 and 𝑝 denote
the number and maximum dimension of these subspaces respectively.
These subspaces can be coded by the 𝑘-dimensional hidden variable 𝒒
via 1-of-𝐾 coding. In the current work, the posterior distribution of data
is represented by 𝑝 (𝒒|𝒙). For example, assume input data 𝒙 belongs to
latent space 𝑗 = 2 and 𝐾 = 5. The hidden variable 𝒒 for 𝒙 can then
be represented as 𝒒 = [0, 1, 0, 0, 0]𝑡 with 𝑝 (𝒒 = [𝟎, 𝟏, 𝟎, 𝟎, 𝟎]|𝒙) being the
probability of latent subspace 𝑗 = 2 given 𝒙. The low dimensional latent
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