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a b s t r a c t

Automated structural design optimization should take into account risk of failure which depends on eigenmodes,
since eigenmode shapes determine failure risk by their characteristic stress concentration pattern, as well as
by their specific interaction with excitations. Thus, such a process needs to be able to identify eigenmodes
with low error rate. This is a rather challenging task, because eigenmodes depend on the geometry of the
structure which is changing during the design process, and on boundary conditions which are not clearly defined
due to uncertainties in the assembly and running conditions. The present investigation aims to find a proper
classification method for eigenmodes of compressor airfoils. Specific data normalization and data dependent
initialization of a neural network using principle-component directions as initial weight vectors have led to the
development of a classification and decision procedure enabling automatic assignment of proper uncertainty
bands to eigenfrequencies of a specific eigenmode shape. Application to compressor airfoils of a stationary gas-
turbine with hammer-foot and dove-tail roots demonstrates the high performance of the proposed procedure.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Lifetime improvement of gas-turbine airfoils can be achieved
through risk minimization of high-cycle fatigue (HCF), which requires
minimizing the excitation risk of critical eigenmodes. Sources for eigen-
mode excitation can be self-induced cyclic pressure fluctuations (flutter)
or engine-order excitations such as pressure wakes of other airfoils
and installations (forced response), see Campbell (1924). In order to
determine if an excitation will actually cause resonance and failure,
would require the prediction of stress levels and thus, displacement
amplitudes through the use of time-consuming, unsteady coupled flow-
structure analyses for all relevant running and installation conditions.
In order to reduce the computational effort, Blocher and Fernández
(2014) introduced a time-linearized-forced-response analysis. It was
incorporated into a structural optimization of a counter rotating fan
by Fernández and Blocher (2014) as well as by Aulich et al. (2013).
The bolted clevises fixing the blades onto the rotor introduce only
little uncertainties w.r.t. stiffness, whereas other fixation types used in
gas-turbines such as hammer-foot roots have high fixation uncertainty
regarding contact with neighboring blades. For example, the contact at
surface A in Fig. 1 can be fully restricted or negligible. These uncer-
tainty margins of the system’s stiffness result in eigenfrequency bands
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rather than discrete eigenfrequencies. Using the time-linearized-forced-
response approach to analyze fixation conditions between full and no
contact with sufficient resolution is computational too expensive.

Other authors try to avoid intersections between resonance and
excitation frequencies (self induced excitations, i.e., flutter as well as
engine order excitations) in general. For example, Seppälä and Hupfer
(2014) performed automated topological optimization of a turbine
guide-vane with the constraint that none of the eigenfrequencies of
the first five eigenmode shapes are allowed to decrease below given
reference values during optimization. But this need for a valid reference
does not allow application to the general case of automated design
improvement starting from an infeasible design. Pugachev et al. (2014),
automatically optimized the eigenfrequencies of a compressor blade
where their process requires a baseline design and goals for the desired
eigenfrequencies. Such an approach cannot be applied to automated
design development either, due to the required user guidance. Astrua
et al. (2012), suggested an optimization process that automatically
shifts the first eight eigenfrequencies of a compressor blade away from
resonance with engine orders, but without the need for a valid reference
design. They also introduced uncertainty margins for their prediction
of the eigenfrequencies, but did not calculate those from the designs.
Such margins of the eigenfrequencies, however, may be predicted by
the consideration of possible extrema in fixation and temperatures as
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Fig. 1. Airfoil with hammer-foot root fixation and extracted projection of the characteristic displacement fields.

shown by Fedorov et al. (2010) and Hecker et al. (2011) for mounted
blades on a massive rotor, or by calculating the eigenfrequencies for the
lowest and highest possible nodal diameter in case of blades mounted on
a disk or blade-integrated disks (blisks), Strehlau and Kühhorn (2010).

Hecker et al. (2011), further introduced a penalty strategy for
eigenfrequency tuning and succeeded in shifting the first ten eigenfre-
quencies of an infeasible design to make it robust against resonance.
This penalty strategy assigns individual penalties to the eigenmode
shapes depending on the risk of failure and risk of excitation for specific
eigenmode shapes, where penalties result from experimental studies
and in-service experience. Therefore, the penalty-strategy requires an
automated, unambiguous assignment of eigenmode shapes and frequen-
cies (classification) because of the changing order and characteristic of
the modes during design changes. Blocher and Aulich (2013), found
that the risk of flutter excitation is identical for similar eigenmode
shapes, and in order to avoid re-assessment during an automated fan-
blade-design optimization, they detected similar modes via the modal-
assurance criterion on consistent FE-meshes.

In order to enable classification of eigenmode shapes of arbitrary
geometries independently of the FE-mesh by using only the FE-node
location information, Martin and Bestle (2016) introduced a method
for projecting airfoil surfaces onto standard rectangular squares, Fig. 1.
Taking this work further, the first part of the present paper reveals how
eigenmode shapes and uncertainty margins behave between loose and
tight fixation with special regards to frequency veering. The subsequent
parts then investigate how various techniques of pattern recognition
(data normalization, dimension reduction and classification) can im-
prove the performance of classification of eigenmode shapes. Finally,
both the fixation study and the classification are the basis for a proce-
dure, where eigenmode uncertainty bands are derived for airfoils of an
industrial gas-turbine compressor.

2. Influence of fixation uncertainties on eigenfrequency bands

Assigning proper frequency bands for each eigenmode shape of
interest requires not only a reliable classifier but also robust decision
rules in the case that classification fails to deliver unambiguous results.
Therefore, it is necessary to understand the change of eigenfrequencies
between the predicted limits w.r.t. the eigenmode shapes. In this section
a rotor blade with hammer-foot-root design is investigated because the
fixation stiffness of such root designs varies widely which in turn causes
significant changes in the shape and order of eigenmodes. The two
stiffness extrema are mainly defined as no contact to neighbors at surface
A in Fig. 1 (loose) and fixed contact (tight). For the matter of simplicity,
the influence of varying temperature is neglected in the study, because
it has only secondary effects on eigenfrequencies. For the analysis,
instead of friction the fixation uncertainty is assumed to be caused by
uncertain stiffness of contact layers, Fig. 2a. Thus, Young’s modulus 𝐸
of the clamping material in the two contact layers is varied between

6 ⋅ 10−6𝐸0 and the modulus 𝐸0 of the blade material. In order to make
the material deformation consistent, the density is varied proportionally
as 𝜌 = 𝜌0𝐸∕𝐸0. The displacements at the surfaces A (now outer surfaces
of contact layers) and B in Fig. 1 are fixed in all directions, respectively.
Further information on the remainder finite-element model is given
by Martin and Bestle (2016).

Fig. 2b shows the change of eigenfrequencies w.r.t. Young’s modulus,
where regions below the fourth and above the 13th eigenfrequency
are omitted for clarity. Obviously, several regions of frequency veering
appear, where neighboring eigenfrequencies come close and then veer
away without crossing. The reason for this behavior is the partial
coupling of vibration modes, and the fact that some modes react
more dynamically to the stiffening of the system than others. This
phenomenon was described by Leissa (1974) as: ‘‘a dragonfly one
instant, a butterfly the next, and something indescribable in between’’.
Although eigenfrequency curves may not cross, corresponding eigen-
mode shapes may interchange. From this point of view, tracking of
eigenmode shapes must be reinterpreted according to Fig. 2c, where
the naming convention is as follows: a mode counter is followed by
mode specifier B for bending, C for chord-wise bending, T for torsion, H
for higher-order, S for stiff-wise-bending mode, and M for mixed mode
(no unambiguous shape character); e.g., 1B is the 1st bending mode.
The first issue that becomes apparent is that stronger mode coupling
leads to higher eigenfrequency changes between loose and tight limits
(e.g. 1H and 3H). In particular, the 1H mode always has high changes as
it couples easily with torsion, bending, and chord-wise-bending modes.
Furthermore, eigenfrequency changes are associated with changes in the
order of eigenmode shapes.

Another issue is that eigenmode shapes like 3T may disappear
between the upper and lower limit of fixation, or they only appear
between these limits and thus remain undetected such as 4T. The latter
case cannot be considered in a design process unless this extensive study
is run for each blade design, which would increase the optimization
time unacceptably. In the case that an eigenmode shape cannot be
traced from one bound to the other, the definition of the corresponding
eigenfrequency band depends on the eigenmode shape (more details in
Section 7).

3. Normalization of eigenmode data

The correct automated assignment of eigenfrequency bands depends
on the quality of classifying eigenmode shapes for lower and upper
stiffness limits, where classification means to establish borders between
clusters of members of different categories. In the present case, the
categories are the fundamental eigenmode shapes and the members are
the corresponding eigenvectors, composed of nodal displacements as
a result of a FE modal analysis. The purpose of data normalization as
the first step in the classification procedure is to enhance separation
between the clusters.
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