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a b s t r a c t

We consider infinite-horizon optimal control of nonlinear systems where the control actions are discrete, and
focus on optimistic planning algorithms from artificial intelligence, which can handle general nonlinear systems
with nonquadratic costs. With the main goal of reducing computations, we introduce two such algorithms that
only search for constrained action sequences. The constraint prevents the sequences from switching between
different actions more than a limited number of times. We call the first method optimistic switch-limited planning
(OSP), and develop analysis showing that its fixed number of switches 𝑆 leads to polynomial complexity in the
search horizon, in contrast to the exponential complexity of the existing OP algorithm for deterministic systems;
and to a correspondingly faster convergence towards optimality. Since tuning 𝑆 is difficult, we introduce an
adaptive variant called OASP that automatically adjusts 𝑆 so as to limit computations while ensuring that near-
optimal solutions keep being explored. OSP and OASP are analytically evaluated in representative special cases,
and numerically illustrated in simulations of a rotational pendulum. To show that the algorithms also work in
challenging applications, OSP is used to control the pendulum in real time, while OASP is applied for trajectory
control of a simulated quadrotor.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control problems arise in numerous areas of technology. Our
focus here is on optimal control in discrete time, so as to maximize a
discounted sum of rewards (negative costs). Optimistic planning (OP)
techniques (Munos, 2014) solve this problem locally for any given
state, by exploring tree representations of possible sequences of actions
(control inputs) from that state, where the tree depth of each sequence
is equal to its length. Given a computational budget of tree node
expansions, performance grows with the resulting depth of the tree,
which can be seen as an adaptive horizon. OP works for general dynam-
ics and rewards, and provides a tight characterization of the relation
between the computational budget and near-optimality. Motivated by
these features, a number of OP algorithms have been introduced, e.g.
by Kocsis and Szepesvári (2006), Bubeck and Munos (2010), Buşoniu
and Munos (2012) and Mansley et al. (2011), which have proven useful
in practical problems (Mansley et al., 2011; Gelly et al., 2006). OP is
usually applied online in receding horizon, as a type of model-predictive
control (MPC).
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In this paper, we consider deterministic systems with discrete (or
discretized) actions, and introduce two new OP techniques tailored for
sequences that are constrained to switch only a limited number of times
between different discrete actions. Inheriting the generality of OP, these
techniques are able to deal with nonlinear dynamics and nonquadratic
reward functions. The switch constraint is motivated by two classes
of problems. In the first class (i), the loss of performance induced by
the constraint is negligible—such as in time-optimal control, where
solutions are of the bang–bang type. In the second class (ii), the switch
constraint must be imposed due to the problem’s nature, accepting the
resulting performance degradation—for example, to decrease computa-
tion time or because setting the actuator to a new discrete level is costly.
Examples of the latter type include traffic signal control (De Schutter and
De Moor, 1998), water level control by barriers and sluices (van Ekeren
et al., 2013), networked control systems (Tabuada, 2007), etc.

First, we propose optimistic switch-limited planning (OSP): an algo-
rithm that only explores sequences with at most 𝑆 switches, with 𝑆
fixed. This allows a significant reduction in computational complexity
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with respect to the state-of-the-art OP algorithm in the discrete-action,
deterministic case: OP for deterministic systems (OPD) (Hren and
Munos, 2008). Indeed, we show that the computational effort needed
by OSP to reach a given depth in the tree is polynomial in this depth,
rather than exponential as in OPD. Therefore, given a computational
budget 𝑛, the tree depth grows quickly and OSP converges faster to the
switch-constrained optimal solution than OPD would converge to the
unconstrained one. The convergence rate is dictated by the degree of
the polynomial, a complexity measure for the optimal control problem.

A limitation of OSP is the need to manually tune the number of
switches 𝑆. A too small value can lead to suboptimal solutions, while
allowing too many switches may lead to unneeded computation. We
therefore develop optimistic adaptive switch-limited planning (OASP),
which automatically finds a good 𝑆. The value of 𝑆 is increased adap-
tively, exploring sequences with more action switches when indicated
by an increment rule. We illustrate two such rules, and analyze both
variants in the same special cases as OSP was analyzed.

OSP is applied in receding horizon simulations to the problem of
swinging up a rotational pendulum. Note that this problem is in class
(i) where near-optimal sequences switch rarely. To illustrate class (ii),
in particular systems where switches are costly, we show how OSP can
take into account bandwidth limitations in networked control systems.
Here, the constraint is enforced in closed loop, so that along any
range of 𝑁 consecutive steps there are at most 𝑆 switches, where 𝑁
is a parameter. Furthermore, OSP is applied to control the physical
pendulum in real time. To evaluate the second algorithm, OASP, it is
compared to OPD and OSP in simulations of the rotational pendulum,
showing that in certain cases OASP performs better than the other
methods, while remaining competitive in other cases. Finally, OASP is
applied to the more complex control problem of trajectory control for
quadrotors, showing the benefits of the novel algorithm over OPD and
over a classical linear–quadratic regulator.

Like the entire class of OP algorithms, OSP and OASP are related
to Monte Carlo tree search (Browne et al., 2012), heuristic search
(Edelkamp and Schrödl, 2012), and planning for robotics (La Valle,
2006). The complexity measure of OSP (polynomial degree) is related
to similar measures in other optimistic algorithms, e.g. the branching
factor of near-optimal sequences in OPD (Hren and Munos, 2008), the
near-optimality exponent in the stochastic case (Buşoniu and Munos,
2012), or the near-optimality dimension in optimization (Munos, 2014);
due to the different structure of the explored tree, these measures do not
work in the switch-constrained problem of OSP, and the new polynomial
degree is needed.

In the MPC field, similar constraints on the number of action changes
have been exploited to decrease computation, e.g. in the linear case by
De Schutter and De Moor (1998), De Schutter (2000) and Alende et al.
(2009), later extended to the nonlinear case as time-instant optimization
MPC (van Ekeren et al., 2013). Applications include hybrid control
(De Schutter and De Moor, 1998; Martinez et al., 2007; Alende et
al., 2009) and hierarchical control (Sadowska et al., 2013). Liu et al.
(2011) constrain the solutions to hold the command constant for a
preset number of steps. In these works, an off-the-shelf optimizer (e.g. of
the mixed-integer linear programming type, see Alves and Clímaco,
2007) is usually applied, and the computational effort is investigated
empirically. Compared to this, the main advantage of our approach is
an analytical characterization of the relationship between the compu-
tational effort and near-optimality, for the complete algorithm down
to the implementation of the optimizer. A second axis of related work
in MPC concerns complexity analysis, typically for linear–quadratic
problems, see e.g. Li and Marlin (2011). A particularly strong work
thread is in explicit MPC (Bemporad et al., 2002), where the optimal
state feedback law is piecewise affine and the complexity of the online
search for the current affine region is characterized, see e.g. Tøndel et al.
(2003), Wen et al. (2009) and Bayat et al. (2011). Overall, MPC typically
uses a fixed, finite horizon, and its main strengths include stability
guarantees, mechanisms to handle constraints, and output feedback

techniques. In contrast, OSP and OASP focus on the generality of the
nonlinear dynamics they can address, while providing near-optimality
and convergence rate guarantees with respect to the infinite-horizon
optimum.

This paper is a revised and extended version of our conference article
(Mathe et al., 2014), where OSP was introduced. The present paper
provides more details and insight into the analysis of OSP, while its
empirical evaluation is done using a different control problem, with
entirely new real-time results. The main novelty compared to Mathe
et al. (2014) is however the adaptive algorithm OASP, with its analysis,
numerical evaluation, and application to simulated quadrotor trajectory
control.

Next, Section 2 gives the necessary background, Section 3 introduces
and analyzes OSP, and Section 4 similarly presents and studies OASP.
Experimental results for the two methods are provided in Sections 5 and
6, respectively. Finally, Section 7 concludes the paper.

2. Background: Markov decision processes and optimistic plan-
ning for deterministic systems

Consider a Markov decision process (MDP) describing an optimal
control problem with state 𝑥 ∈ 𝑋, action 𝑢 ∈ 𝑈 , transition function
𝑓 ∶ 𝑋 × 𝑈 → 𝑋, 𝑓 (𝑥, 𝑢) = 𝑥′ and an associated reward function
𝜌 ∶ 𝑋 ×𝑈 → R. The function 𝑓 (𝑥, 𝑢) describes the transition from state 𝑥
to 𝑥′ when applying action 𝑢, i.e. the system dynamics. Each transition
is rewarded by 𝜌(𝑥, 𝑢).

We assume that the action space 𝑈 is finite and discrete, 𝑈 =
{

𝑢1,… , 𝑢𝑀
}

, and the system dynamics 𝑓 (𝑥, 𝑢) and the reward function
𝜌(𝑥, 𝑢) are known. Additionally, to facilitate the analysis, the reward
function is assumed to be bounded to the unit interval, 𝜌(𝑥, 𝑢) ∈
[0, 1],∀𝑥, 𝑢. The only restrictive part here is the boundedness of the
reward, which is often assumed in AI approaches to solving MDPs; then,
the rewards can be scaled and translated to the unit interval without
affecting the optimal solution.

The objective is to find for any given state 𝑥0 an infinite action
sequence ℎ∞ = (𝑢0, 𝑢1,…) that maximizes the value function (discounted
sum of rewards):

𝑣(ℎ∞) =
∞
∑

𝑘=0
𝛾𝑘𝜌(𝑥𝑘, 𝑢𝑘) (1)

where 𝑘 ≥ 0 is the discrete time step, 𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘), and 𝛾 ∈ (0, 1) is
the discount factor. The optimal value is denoted by 𝑣∗ = supℎ∞𝑣(ℎ∞).

Optimistic Planning for Deterministic Systems (OPD) (Hren and
Munos, 2008; Munos, 2014) is an extension of the classical 𝐴∗ tree
search to infinite-horizon problems. OPD looks for 𝑣∗ by creating a
search tree starting from 𝑥0 that explores the space of action sequences
by simulating their effects, until a given computational budget is
exhausted. This budget is denoted by 𝑛 and measures the number of
nodes the algorithm is allowed to expand in the search tree, where
expanding a node means adding 𝑀 child nodes to it, one corresponding
to each action from 𝑈 . Fig. 1 shows an example of a tree after 𝑛 = 3
expansions have been performed.

A node at depth 𝑑 is equivalent to the action sequence ℎ𝑑 =
(𝑢0, 𝑢1,… , 𝑢𝑑−1) leading to it: e.g. in Fig. 1, for the bold node at depth
𝑑 = 3 one has ℎ3 = (𝑢1, 𝑢2, 𝑢2). Consider any infinitely long action
sequence ℎ∞ that starts with ℎ𝑑 . Now, define the following lower bound
on 𝑣(ℎ∞):

𝜈(ℎ𝑑 ) =
𝑑−1
∑

𝑘=0
𝛾𝑘𝜌(𝑥𝑘, 𝑢𝑘) ⩽ 𝑣(ℎ∞) (2)

and the following upper bound on 𝑣(ℎ∞):

𝑏(ℎ𝑑 ) = 𝜈(ℎ𝑑 ) + 1 ⋅ 𝛾𝑑 + 1 ⋅ 𝛾𝑑+1 +⋯ = 𝜈(ℎ𝑑 ) +
𝛾𝑑

1 − 𝛾
⩾ 𝑣(ℎ∞). (3)

Note that these bounds are valid because 𝛾 < 1 and the rewards take
values between 0 and 1.
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