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a b s t r a c t

This paper presents a visual object tracking algorithm using an eigenspace representation. Previous
approaches to eigenspace methods for object tracking use vectorized image regions as observations.
Here, feature vectors associated to pixels of the target template are considered to be individual ob-
servations of the target object. The collection of observations is learned using non-linear subspace
projection to arrive at an eigenspace representation. This representation allows tracking pixel-wise but
the pixels are tied together using subspace representation which provides a robust and compact re-
presentation of the object. Localization and segmentation are carried out by deriving a similarity function
in the eigenspace representation. A gradient descent and mean-shift based techniques are derived to
maximize the similarity function with respect to the transformation parameters. The de-noising and
clustering capabilities of the eigenspace representation lead to a localization procedure that is robust to
noise and partial occlusion. For fast moving objects and to recover from total occlusion, a probabilistic
search strategy, based on particle filter, is also developed. A unique feature of our approach is that it
permits segmentation in addition to localization when multiple templates of the target are given. The
performance of the algorithm is tested on real world tracking examples.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Visual tracking is the process of locating an object of interest
through a sequence of successive images. It is a fundamental
problem in computer vision with wide areas of applications such
as surveillance, traffic monitoring, human computer interaction,
vehicle navigation, and robot planning. Some of the problems as-
sociated with object tracking are image noise, occlusion, back-
ground clutter, complex object shapes, etc.

Target objects can be represented by their appearances, such as
color, texture, edges, and shape information, which provide char-
acteristic information about the object. This characteristic in-
formation, gathered from a template or a set of templates of the
target object, is encoded into a cost or similarity function. Tracking
algorithms then determine the correspondence of the object re-
gion in consecutive images by optimizing the pre-determined si-
milarity functional. Methods following this approach are called
generative methods (Kwon and Lee, 2001; Liu et al., 2011; Gao et al.,
2014), as they search the image space to find the region most si-
milar to the target model. In contrast to generative methods, dis-
criminative methods formulate the problem as a binary

classification problem. From positive and negative samples, a
classifier is trained to separate the foreground from the back-
ground. This can be carried out at pixel level (Godec et al., 2013;
Avidan, 2007) or at region level (Hare et al., 2011; Henriques et al.,
2015). The latter methods are also called tracking by detection.
Tracking by detection methods are more suitable for tracking rigid
methods while methods that pose tracking as pixel wise classifi-
cation problem are more suitable for non-rigid objects as they
ignore the spatial information (Oron et al., 2012).

Algorithms can also be grouped on the basis of different en-
coding strategies employed to track rigid and non-rigid objects.
Tracking rigid objects call for methods that encode the spatial
geometry of the object in similarity function. In the simplest case
of template matching, the similarity function is reduced to per
pixel difference between the template and the target region. More
involved methods use multiple templates (Kwon and Lee, 2001),
sparse representations (Mei et al., 2011; Wang et al., 2015; Zhang
et al., 2015) and subspace models (Ross et al., 2004; Sun and Liu,
2010). For deformable objects, histogram based approaches are
more suitable (Oron et al., 2012), reducing the similarity between
target and candidate region to similarity between color distribu-
tions. For example, Comaniciu et al. (2003) use a histogram
weighted by a spatial kernel as a probability density function of
the object region. The correspondence of the target object be-
tween sequential frames is established at the region level by op-
timizing the Bhattacharya coefficient between the target and the
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candidate distributions using mean-shift (Cheng, 1995). Histo-
grams discard spatial information, which becomes problematic
when faced with occlusions and the presence of target features in
the background. Attempts to incorporate spatial information into
the descriptor have been proposed in Hager et al. (2004), Zhimin
et al. (2007), Birchfield and Rangarajan (2005). The aforemen-
tioned algorithms require computing the probability density
functions (histograms), which becomes computationally expensive
for higher dimensions. An additional problem associated with
computing probability density functions is the sparseness of the
observations within the feature space, especially when the sample
set size is small. Methods, such as Yang and Duraiswami (2005),
Singh et al. (2004), Elgammal et al. (2003) define similarity func-
tions between kernel density estimates of the template and target
distribution in a joint feature-spatial space. Since these methods
employ non-parametric density comparison techniques, the in-
termediate step of estimating the density function is not carried
out.

Essential to improved tracking is the derivation of a model that
can capture the relationship between the purely image-based
observations and the spatial content associated to said observa-
tions. Some generative methods use unsupervised learning tech-
niques such as principal component analysis (PCA) to measure the
correlation among the pixels of the templates of the target. The
templates are vectorized to form a matrix = [ … ]D I I I, , n1 2 , where
each column is a vectorized template. The covariance matrix ob-
tained from the data in D is diagonalized to obtain a low dimen-
sional eigenspace representation of the target. This representation
has been used for tracking in Black and Jepson (1998) and Lim
et al. (2004). In Lim et al. (2004), the subspace is also in-
crementally updated to account for appearance and illumination
change. Tsai et al. (2003) perform PCA on a collection of vectorized
signed distance maps of the training shapes to incorporate the
shape model into the segmentation procedure. Similarly (Sun and
Liu, 2010) uses incremental Kernel PCA with particle filtering fra-
mework to track objects that perform pose variation or undergo
occasional occlusion. In all the subspace methods discussed here,
each vectorized template Ii is an observation with the implicit
assumption that the image appearance will remain similar to the
training templates. However, under partial or extensive occlusions
this assumption will not hold and the tracker may give erroneous

results.
In this paper, we propose to use each pixel vector of the target

template as an observation, unlike the aforementioned methods,
where vectorized target template is considered as an observation.
A pixel vector is a concatenation of appearance (color value, gra-
dient, edge value etc.) and spatial location. The method is sche-
matically described in Fig. 1. Pixel vectors extracted from a single
template can be used for learning the model. Such an approach is
not feasible for other eigenspace methods, where several to many
vectorized object templates are required. The representation is
powerful in the sense that tracking is done pixel-wise, but the
pixels are tied together in eigenspace representation.

Contributions: This paper connects non-parametric, kernel-
based methods with statistical eigenspace methods to derive a
target localization strategy. Each feature vector associated to a
pixel of the target object describes an observation of the target
object, whose overall joint appearance-spatial geometry is learned
using non-linear eigenspace representation associated to the col-
lection of feature vectors forming the target. The eigenspace re-
presentation provides a compact and robust description of the
target being tracked. A gradient descent and mean-shift based
optimization techniques are developed to robustly track the ob-
ject. These strategies provide reliable solution under partial oc-
clusion. To track through total occlusion and to track fast moving
objects, we also develop particle filtering based approach (Ar-
ulampalam et al.) to sequentially estimate the state variables,
which in our case are the transformation parameters of the rec-
tangular target object region. Particle filter performance increases
when sample size is large. However, increasing the samples also
increases the computational cost. In this paper, we also derive
kernel integral image based formulation that allows us to densely
sample the state space without loosing computational efficiency.
The speedup obtained is of about 2.5 orders of magnitude over
non-integral image implementation. This paper improves upon
and extends an earlier basic version of the paper (Arif and Vela,
2009).

We describe the target eigenspace representation in Section 2.
Similarity measure is explained in Section 3 followed by object
tracking methods described in Section 4. Experimental validation
of the proposed algorithm is carried out in Section 5.

Fig. 1. Target representations: template-wise vs. pixel-wise. (a) Each template is an observation. Training templates are vectorized, stacked together, and learned. (b) Pro-
posed approach: Each pixel vector (appearanceþspatial location) is an observation. Pixel vectors from all training templates are amassed and learned.
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