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a b s t r a c t

In this letter, the authors propose a new embedding scheme for image-based continuous face pose
estimation. The main contributions are as follows. First, it is shown that the concept of label-sensitive
Locality Preserving Projections, proposed for age estimation, can be used for model-less face pose esti-
mation. Second, the authors propose a linear embedding by exploiting the connections between facial
features and pose labels via a sparse coding scheme. The resulting technique is called Sparse Label
sensitive Locality Preserving Projections (Sp-LsLPP). Third, for enhancing the discrimination between
poses, the projections obtained by Sp-LsLPP are fed to a Discriminant Embedding that exploits the
continuous labels. The resulting framework has less parameters compared to related works. It has been
applied to the problem of model-less face yaw angle estimation (person independent 3D face pose
estimation). It was tested on three databases: FacePix, Taiwan, and Columbia. It was conveniently
compared with other linear and non-linear techniques. The experimental results confirm that the pro-
posed framework can outperform, in general, the existing ones.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Face image analysis has attracted increasing attention in the
computer vision community. It is required for developing artificial
systems able to perform intelligent behavior such as face recog-
nition and annotation (Choi et al., 2011; Hu et al., 2011; Huang et
al., 2014; Hwang et al., 2011; Lu et al., 2013), facial landmark
annotation (Zhu and Ramanan, 2012), age estimation (Chao et al.,
2013), or face pose estimation (Murphy-Chutorian and Trivedi,
2009). Human's facial pose is considered as an important cue of
non-verbal communication. Indeed, humans can easily discover
and understand other people's intentions easily by interpreting
their head pose. However, in order to make a machine capable of
interacting with the human's head movements and expressions,
huge effort has to be done to estimate the pose from the pixel
representation of a facial image in a robust and efficient way. The
estimation process requires a series of processing steps to trans-
form a pixel-based representation of a face into a high-level con-
cept of direction. 3D face pose can play an important role in many

applications (Wholer, 2013). For instance, it can be used in the
domain of face recognition either by using hierarchical models or
by generating a frontal face image. The head pose estimation refers
to the specific task consisting of determining the position and/or
the orientation of the head in an image (e.g. a facial one). This task
is a challenging problem because there are many degrees of
freedom that should be estimated.

Recently, researchers investigated the 3D sensing technologies
for face pose estimation (Fanelli, 2011; Pashalis et al., 2012).
Although this technology promises a lot in overcoming some of
the problems of methods based on 2D data by using the additional
depth information, it suffers of serious computational problems. It
cannot handle large pose variations, it cannot run in real time and
it needs manual initialization. Furthermore, they are not as scal-
able as the 2D sensors providing 2D images.

During the past years many techniques and algorithms have
been proposed to estimate the pose of faces from images. A good
survey about the proposed techniques can be found in Murphy-
Chutorian and Trivedi (2009). The majority of work in 3D face pose
estimation deals with tracking full rigid body motion. This requires
the estimation of 6 degrees of freedom of the face/head in every
video frame. This can be successful for a limited range of motion
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(typically 745° out-of-plane) and only for relatively high resolu-
tion images (Whitehill and Movellan, 2008). Such systems typi-
cally rely on a 3D model that should be fitted to the person specific
shape (Dornaika and Davoine, 2006; Unzueta et al., 2014). There is
a tradeoff between the complexity of the initialization process, the
speed of the algorithm and the robustness and accuracy of pose
estimation. Although the model-based systems can run in real-
time, they rely on frame-to-frame estimation and hence are sen-
sitive to drift and require relatively slow and non-jerky motion.
These systems require initialization and failure recovery. For
situations in which the subject and camera are separated by more
than a few feet, full rigid body motion tracking of fine head pose is
no longer practical. In this case, model-less pose estimation can be
used (Guo et al., 2008; Aghajanian and Prince, 2009). This
approach can be performed on a single image at any time without
any model given that some pose-classified ground truth data are
previously learned (Fu and Huang, 2006; Ma et al., 2006a).

Geometric methods (Horprasert et al., 1996; Wang and Sung,
2007) rely heavily on the estimation of facial features, such as
eyes, mouth corners, nose tip, etc. and use their relative position to
estimate the pose using projective geometry. For example, if the
eyes and the mouth form an isosceles triangle, then the image
corresponds to a frontal view. The major disadvantage of these
methods is to locate the features needed for estimation in a very
precise and accurate way. They also need to handle missing facial
features in some poses. Appearance template methods use simi-
larity algorithms and compare a given image to a set of exemplars
in order to discover the most similar image (Beymer, 1993; Niyogi
and Freeman, 1996). Nevertheless, even if these methods have the
advantage of not requiring a feature extraction step, they may
suffer from noise caused by illumination and expression changes
in addition to the need of high computational power since the
matching process they use is based on pair-wise similarities.
Classification-based methods (Huang et al., 1998) operate by
training head pose classifiers through the distribution of the
training images into a set of discrete head poses. However, both
the appearance template and classification-based methods can
only return discrete poses and are sensitive to non-uniform sam-
pling in the training data. Regression-based methods (Ma et al.,
2006b) allow us to obtain continuous pose estimates. Indeed, they
use regression techniques (Drucker et al., 1996; Vinzi et al., 2008)
in order to find the relationship between the face image and its
corresponding pose and to earn continuous mapping functions
between the face image and the pose space. The high dimen-
sionality of the data represents an important challenge in this kind
of methods because of the well-known “curse of dimensionality”
problem (Bishop, 2006).

Many researchers use a dimensionality reduction step before
the regression (Chun and Keles, 2007; Nilsson et al., 2007). The
main disadvantage of these methods is that their performance
deteriorates with bad head localization. The manifold embedding
methods (Balasubramanian et al., 2007) consider face images as
samples of a low-dimensional manifold embedded in the high-
dimensional observation space (the space of all possible images).
They try to find a low dimensional representation that is linked to
the pose. After that, classification or regression techniques are
applied to discover the pose. The main weakness of manifold
embedding methods is that appearance variation is not only
affected by pose changes but also by other factors such as lighting
changes and identity.

As can be seen, manifold learning and machine learning
approaches are the only tools that can solve the face estimation for
the featureless and model-less cases. For example, the Synchro-
nized Submanifold Embedding (SSE) was proposed in Yan et al.
(2009) in order to project face images. This proposed algorithm is
dually supervised by both identity and pose information. The

submanifold of each subject is approximated as a set of simplexes
constructed using neighboring samples, and the pose label is fur-
ther propagated within all the simplexes by using the generalized
barycentric coordinates. Then these submanifolds are synchro-
nized by seeking the counterpart point of each sample within the
simplexes of a different subject, and consequently the Synchro-
nized Submanifold Embedding is formulated to minimize the
distances between these aligned point pairs and at the same time
maximize the intra-submanifold variance. Finally, for a new
datum, a simplex is constructed using its nearest neighbors mea-
sured in the dimensionality reduced feature space, and then its
pose is estimated as the propagated pose of the nearest point
within the simplex.

1.1. Letter contribution

In this letter, the authors propose a new embedding scheme for
image-based continuous 3D face pose estimation. The main con-
tributions are as follows. First, the authors show that the concept
of label sensitive Locality Preserving Projections, proposed for age
estimation, can be used for modeless face pose estimation. Second,
the authors provide a linear embedding by exploiting the con-
nections between facial features and pose labels via a sparse
coding scheme. The resulting technique is called Sparse Label
Sensitive Locality Preserving Projections (Sp-LsLPP). Third, for
enhancing the discrimination between poses, the projections
obtained by the Sparse Label sensitive Locality Preserving Projec-
tions are fed to a Discriminant Embedding that exploit the con-
tinuous labels. The authors stress the fact that the proposed
embedding method can be useful for many real-world problems
for which data have continuous labels such as age estimation, face
attractiveness scoring and facial emotion scoring. The letter is
organized as follows. Section 2 reviews the linear manifold
learning techniques as well as the label sensitive Locality Preser-
ving Projections method. Section 3 presents the proposed frame-
work. Section 4 presents a performance evaluation on two real
face image datasets. Section 5 provides some concluding remarks.

2. Manifold learning: related work

The classic linear embedding methods such as Principal Com-
ponent Analysis (PCA), Linear Discriminant Analysis (LDA) (Fuku-
naga, 1990), and Maximum Margin Criterion (MMC) (Li et al.,
2006) are proved to be computationally efficient and suitable for
practical applications, such as pattern classification and visual
recognition. PCA projects the samples along the directions of
maximal variances and aims to preserve the Euclidean distances
between the samples. Unlike PCA which is unsupervised, LDA
(Fukunaga, 1990) is a supervised technique. One limitation of PCA
and LDA is that they only see the linear global Euclidean structure.
In addition to the Linear Discriminant Analysis (LDA) technique
and its variants (Dai and Yuen, 2007; Fukunaga, 1990), there is
recently a lot of interest in graph-based linear dimensionality
reduction. Many dimensionality reduction techniques can be
derived from a graph whose nodes represent the data samples and
whose edges quantify the similarity among pairs of samples
(Sugiyama, 2007; Yan et al., 2007). Recent proposed methods
attempt to linearize some non-linear embedding techniques. This
linearization is obtained by forcing the mapping to be explicit, i.e.,
performing the mapping by a projection matrix. For example,
Locality Preserving Projection (LPP) (Xu et al., 2010) and Neigh-
borhood Preserving Embedding (NPE) (He et al., 2005) can be seen
as linearized versions of Laplacian Eigenmaps (LE) and Local Linear
Embedding (LLE), respectively. The main advantage of the
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