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a b s t r a c t

In this paper, we propose a randomized greedy multi-start algorithm for the minimum common integer
partition problem. Given k multisets S1;…; Sk of positive integers (Si ¼ fsi1;…; sij;…; simi

g), the goal is to
find the common integer partition T with minimal cardinality, i.e., a unique and reduced multiset T that, for
each Si, it can be partitioned into mi multisets Tj so that the elements in Tj sum to sij. This mathematical
problem is reported to appear in computational molecular biology, when assigning orthologs on a
genome scale or assembling DNA fingerprints in particular. Our proposed metaheuristic approach con-
stitutes the construction of multiple solutions by a new greedy method that embeds a diversification
agent to allow diverse and promising solutions to be reached. Furthermore, we formulate an integer
programming model for this problem and show that the CPLEX solver can only solve small instances of
the problem. However, computational results for problem instances involving up to 1000 multisets (each
one with up to 1000 elements) show that our innovative metaheuristic produces very good feasible
solutions in reasonable computing times, arising as a very attractive alternative to the existing approa-
ches.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Consider two multisets S¼ fs1;…; smg and T of positive integers.
T is called an integer partition of S, if there exists a partition of T
into multisets Ti such that for each i the sum of integers in Ti equals
si. Given several sets S ¼ fS1;…; Skg, if T is an integer partition of
every Si, then T is a common integer partition of S. For example,
given S ¼ S1 ¼ f3;3;4g; S2 ¼ f2;2;6gf g, T ¼ f1;1;2;2;4g is a common
integer partition of S, as shown in Fig. 1. Notice that each integer in
T is associated to a unique element of S1 and S2 and that each
element in S1 and S2 can be obtained by adding their associated
elements in T.

The minimum common integer partition (MCIP) problem (Chen
et al., 2006) consists of finding a common integer partition T of S
with minimum cardinality. Considering the above example, we
can check that T 0 ¼ f2;2;3;3g is another common integer partition
of S. Since the cardinality of T 0 is less than that of T, the former is
preferred. The problem has practical applications in computational
molecular biology, in particular, ortholog assignment (Chen et al.,
2005a,b; Fu et al., 2006) and DNA hybridization fingerprint

assembly (Valinsky et al., 2004) (see Chen et al., 2008; Woodruff,
2006 for more details on these and some other applications).

The problem is known to be NP-hard (Chen et al., 2006) (it
generalizes the well-known subset sum problem Corten et al.,
2009) and APX-hard (Chen et al., 2006, 2008), so exact methods
rapidly become impractical even for small cases, and there is not
polynomial-time (1þϵ)-approximation algorithms for arbitrarily
small ϵ40 either, unless P¼NP. This means that approximation
algorithms, which have the advantage of guaranteeing minimal
performance, either run in polynomial time but with high/large
exponents, or may not assure sufficiently good performance.
Nevertheless, the progress in the literature has been mainly
focused in approximation methods. (Chen et al., 2006, 2008)
presented a 5

4 -approximation algorithm1 for the MCIP of two sets
(jS j ¼ 2) by using a heuristic for the maximum set packing pro-
blem, and a 3kðk�1Þ=ð3k�2Þ-approximation algorithm for MCIP
problems with kZ3 multisets (jS j ¼ k). Woodruff (2006) proved
an asymptotic worst-case performance ratio of 0.6139k for this
problem by looking at what he called redundancy of S, which is a
quantity capturing the frequency of integers across the different
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SiAS. Recently, Tong and Lin have proved an absolute 0.6k ratio,
but the best asymptotic worst-case ratio was previously provided
by Zhao et al. (2006), 0.5625k, by viewing this problem as a flow
decomposition problem in some flow network.

Metaheuristics (Blum and Roli, 2003; Boussaïd et al., 2013;
Chiong and Weise, 2011; Lozano and García-Martínez, 2010) are
algorithms that usually provide excellent results for optimization
problems in practice, though they do not normally guarantee a
bound on the approximation ratio. Highly constrained combina-
torial optimization problems such as the MCIP problem have
proved to be a challenge for metaheuristic solvers (Randall and
Lewis, 2010). This is a situation in which it is difficult to define an
efficient neighborhood, thus no local search is available (Maniezzo
et al., 2002). Therefore, the incorporation of specialized con-
structive greedy heuristics is often necessary in order to produce
practical implementations (Randall and Lewis, 2010). Strong con-
straints are also very usual in engineering optimization problems
(Cagnina et al., 2008) such as the welded beam design optimization
problem (Ragsdell and Phillips, 1976) and the speed reducer design
optimization problem (Golinski, 1973).

In this work, we tackle the MCIP problem with a randomized
greedy multi-start (Lozano et al., 2011; Martí et al., 2013; Resende
and Ribeiro, 2003) algorithm. This metaheuristic repeatedly
applies a controlled randomization of a greedy method as the
strategy to effectively explore the huge search space of computa-
tionally hard optimization problems. In particular, our approach
adds some randomization to a greedy procedure specifically
designed for generating feasible solutions for the given MCIP case.
We also present an integer quadratic programming (IQP) formula-
tion for the MCIP problem

The rest of this paper is organized as follows. Section 2 intro-
duces an integer programming formulation for the MCIP problem.
Section 3 presents our multi-start metaheuristic for this problem,
the novel and effective greedy subordinate heuristic and the ran-
domized framework it is included in. Section 4 provides an ana-
lysis of the performance of our algorithm and comparisons with
regards to the existing approaches from the literature and the
results of CPLEX. Finally, Section 5 contains a summary of results
and conclusions.

2. Integer quadratic programming model

In this section, we propose an IQP formulation of the MCIP pro-
blem, which is based in the following notation. Let Smm be
the minimum among the maxima of each multiset SiASðSmm

¼minSi ASfmaxðSiÞgÞ, ~S be the summation of the elements of
any multiset in Sð ~S ¼P

sij A Si
sij; for any SiASÞ, 2 and without loss of

generality, let m be the cardinality of the multisets
ðm¼ j Si j ; for any SiAS). In case that the multisets had different
cardinalities, we could complete the smaller ones with zeros, solve this
case, and remove the zeros at the end. The model, shown in Fig. 2, is

based on the following three sets of indexes and three sets of
variables:

� Index iAf1;…; kg is used to get the ith multiset SiAS.
� Index jAf1;…;mg is used to access to the jth element of a

multiset, sijASi.� Index lAf1;…; ~Sg, given a set of integer candidate elements of
the solution C ¼ fc1;…; c ~S g of the MCIP problem (the real solu-
tion T is a subset of C), this index is used to locate the lth can-
didate element.

� Integer variables clAf0;…;Smmg represent integer candidate
elements of the solution of the MCIP case. The number of cl
variables is ~S , according to the range of the index l.

� Binary variables xijlAf0;1g, where xijl ¼ 1 indicates that variable
cl contributes to the integer partition of the value sijASi, and
xijl ¼ 0 otherwise. Notice that the number of xijl variables is
k �m � ~S .

� Binary variables xlAf0;1g, where xl ¼ 1 indicates that the can-
didate element cl belongs to the solution T of the MCIP problem,
and xl¼0 otherwise. Notice that these variables can be deduced
from the values of xijl variables. They are introduced in order to
simplify the IQP model.

In the model shown in Fig. 2:

� Eq. (1) specifies the objective, which is to obtain a solution T
with a minimal number of elements.

� Constraints in Eq. (2) establish the integer partition constraints,
i.e., the summation of the candidate elements cl that contributes
to the integer partition of sij, according to the values of the xijl
variables, must be exactly equal to sij.

� Constraints in Eq. (3) ensure that each candidate component of
the solution participates at most in the integer partition of one
element sij per multiset Si.

� Constraints in Eq. (4) make sure that the selected candidate
components of the solution, those with xl¼1, participate exactly
in m integer partitions, or none otherwise. Together with con-
straints (3), they guarantee that the selected candidate com-
ponents participate in the integer partition of one and only one
element per multiset.

� Constraints in Eq. (5) are bound constraints. Notice that no
integer value greater than Smm can belong to a solution of the
MCIP problem, because it cannot participate in any integer
partition of multisets without elements greater than Smm.

� Finally, notice that ~S candidate components are sufficient
because the all-ones (exactly ~S ones) is a trivial solution, the
worst feasible one.

Fig. 1. An example where T is a common integer partition of S1 and S2.

Fig. 2. Integer quadratic programming model of the MCIP problem.

2 Chen et al. (2006) proved that the necessary and sufficient condition for a set
of multisets S to have a common integer partition is that the multisets have the
same summation over their elements.
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