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a b s t r a c t

An effective but yet simple approach is introduced to automatically attain a dynamic feedforward control
law for non-linear dynamic systems represented by discrete-time local model networks (LMN). In this
context, feedback linearization is applied to the generic model structure of LMN and the resulting input
transformation is used as model inverse. This general and automated approach for model inversion is
applicable even when the overall model complexity may be high. Thus, by representing a non-linear
dynamic system by an LMN and applying the proposed feedforward control law generation, a dynamic
feedforward control for such a non-linear system can be found automatically with the knowledge of
measured input–output data only. However, when feedback linearization is considered, the stability of
the internal dynamics plays a key role. This paper analyses the occurring internal dynamics for LMN,
which directly result from the chosen model structure in identification, and discusses the effects on the
transformed system. Finally, the effectiveness of the proposed data-driven feedforward control is
demonstrated by a simulation example as well as by an actual application to the pre-distortion of a
microelectromechanical systems (MEMS) loudspeaker with electrostatic actuation.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The automatic generation of models from measured input and
output data is nowadays an established approach in many engi-
neering disciplines (e.g. Sjöberg et al., 1995; Murray-Smith and
Johansen, 1997; Norgaard et al., 2000; Nelles, 2001; Ljung, 2010).
Commonly, such models are used to simulate the real process for
various purposes, such as managing complex traffic networks
(McKenney and White, 2013), optimum control of cogeneration
heat and power plants (Cerri et al., 2006) or model predictive
control in general (Townsend and Irwin, 2001), to name a few. In
recent years, significant research efforts have been made to also
exploit the structure of non-linear dynamic models in order to
facilitate the design of control systems (Hametner et al., 2014; Gao
et al., 2002; Deng et al., 2008).

When control tasks are considered, non-linear model struc-
tures such as local model networks (LMN) can also be used to
determine control laws and their parameters (e.g. Hametner et al.,
2013; Hafner et al., 2000). In general, LMN are a well-established
multiple-model approach for data-driven modelling of non-linear

systems (e.g. Gregorčič and Lightbody, 2007, 2010; Hametner and
Jakubek, 2011; Nelles, 2001). This model architecture interpolates
between different local models, each valid in a certain operating
regime which offers a versatile structure for the identification of
non-linear dynamic systems. Each operating regime represents a
simple model, e.g. a linear regression model (Murray-Smith and
Johansen, 1997), whose parameters are found by identification.
Although the complexity of LMN increases with the amount of
local linear models to form a sophisticated non-linear model, the
model structure still remains generic. This fact is beneficially
exploited when automatically generating a dynamic feedforward
control law for arbitrarily complex LMN.

To obtain such a dynamic feedforward control law, usually
some kind of model inversion has to be performed. Inspired by
Silverman (1969), who investigated invertibility for time varying
linear systems, Hirschorn (1979) extended the basic principles of
system inversion to non-linear systems. Despite numerous
research efforts (e.g. Isidori and Byrnes, 1990; Devasia et al., 1996),
system inversion still remains a challenging task, which in general
requires a thorough analysis and knowledge of the non-linear
system under consideration.

However, in the presented approach, by considering the gen-
eric model structure of LMN, the application of feedback linear-
ization automatically leads to an output–input relation, which is
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suitable as dynamic feedforward control law for the underlying
non-linear process. Thus, a model inverse can directly be found
from measured input–output data only.

Originally the concept of feedback linearization has been
introduced by Byrnes and Isidori (1984) for the first time. Basically,
a non-linear system is linearized exactly by using a non-linear
coordinate transformation such that the resulting transformed
system consists of an input transformation, linear external
dynamics and unobservable internal dynamics. The latter repre-
sent a non-linear equivalent to the notion of transmission zeros in
linear system theory. A historical perspective of this wide field as
well as a detailed review of the feedback linearization technique is
given by Isidori (1995) or Slotine and Li (1991). Feedback linear-
ization for discrete-time systems, as it is necessary with LMN, has
been addressed for example by Lee et al. (1987), Monaco and
Normand-Cyrot (1987) or Grizzle (1986). For continuous-time
systems, feedback control using neural networks in combination
with feedback linearization approaches has already been applied
(He et al., 1998; Chien et al., 2008).

Both, LMN (Murray-Smith and Johansen, 1997; Norgaard et al.,
2000; Nelles, 2001; Maass et al., 2009; Novak and Bobal, 2009;
Hametner et al., 2014) and the concept of feedback linearization
are by themselves well established concepts in academia as well as
in industry (e.g. Kotman et al., 2010; Moulin and Chauvin, 2011;
Nielsen et al., 2010; Tuan et al., 2013). However, combining both
ideas offers the opportunity to provide a substantial tool to
dynamically feedforward control any arbitrary non-linear process
with knowledge of measured input–output data only. The
approach taken in this paper supersedes the need for an in-depth
knowledge of the underlying non-linear process as the generic
model structure of LMN allows for an automated generation of a
feedforward control law. Besides introducing the concept of
automatic generation of feedforward control laws, this paper also
examines those pitfalls, which are associated with the method,
namely the stability of the internal dynamics, respectively, the
zero dynamics. According to Isidori (2013), at least “systems in
which the zero dynamics are unstable are still a substantially unex-
plored and open area of research”. Therefore, in the present con-
tribution an analysis of the more general internal dynamics (as
compared to zero dynamics or a minimum phase property) for
LMN is given. In addition, an overview of how to choose the
architecture of the LMN in order to obtain a model with full
relative degree, which is preferable for feedforward control,
is given.

Typically, feedforward control is used as an enhancement of
common feedback control strategies. In Fig. 1 a so-called two-
degrees-of-freedom control scheme is depicted where the design

of the feedforward part Σ̂
�1
ol and the feedback part ΣC is inde-

pendent of each other. If parameter uncertainties or model errors

occur in Σ̂ ol and Σ̂
�1
ol , respectively (e.g. due to measurement noise

on the identification data), the feedback part will still track the
desired trajectory and try to compensate for the inaccuracies.
However, only stable plants should be considered in a control
scheme including a feedforward part.

Feedforward control of LMN has been considered in the lit-
erature before. Karer et al. (2011) applied feedforward control to a
dynamic hybrid fuzzy model of a batch reactor with both discrete
and continuous states. Therein the partitioning considers the

output only and the validity functions are triangular. In the present
contribution also the input can be used as a dimension of the
partition space, which is an important prerequisite for the parti-
tioning of many non-linearities where off-equilibrium conditions
arise (Johansen et al., 2000). In addition, a hierarchical dis-
criminant tree, which is determined from input–output data only
(Hametner and Jakubek, 2011; Jakubek and Hametner, 2009),
yields the validity functions instead of utilizing fuzzy rules.
Nentwig and Mercorelli (2008) proposed an algorithm for a
combined analytical/numerical inversion of a static fuzzy neural
network applied to a throttle valve control. In contrast, the pre-
sented approach in this paper also holds for dynamic LMN and in
addition directly incorporates non-linear validity functions of
arbitrary shape into the automatic feedforward control law gen-
eration. Hagan et al. (2002) propose NARMA-L2 control, which
incorporates an approximation of a non-linear autoregressive-
moving average (NARMA) model found by non-linear identifica-
tion. The resulting NARMA-L2 model contains two separate sub-
networks such that the next controller input u(k) is not contained
inside the non-linearity and can therefore be used to solve for a
reference tracking control input. However, a specific model
structure is required in the identification. Boukezzoula et al. (2003,
2007) analytically invert a Takagi–Sugeno fuzzy model by feed-
back linearization for designing a fuzzy controller, although the
submodels are inverted locally and an additional criterion has to
be considered in each time step to choose from multiple solutions.

In a direct data-driven design approach such as direct inverse
control (e.g. Norgaard et al., 2000; Hunt et al., 1992) depicted in
Fig. 2(b), the inverse model is identified from input–output data
directly. In contrast, in the presented approach outlined in Fig. 2
(a), the inverse is found from an existing plant model. The latter
procedure offers the opportunity to exploit the existing and gen-
eric model structure of local model networks. By evaluating the
relative degree and the resulting internal dynamics, this approach
allows a far deeper insight and a methodology to analyse and
understand the resulting feedforward control law. In addition, no
dedicated identification procedure or special model structure is
required.

Numerous applications in various branches of the industry
benefit from the presented approach as merely adequately mea-
sured input–output data are required to identify a model (i.e. an
LMN) of almost any arbitrary non-linear dynamic process. To
automatically obtain a feedforward control law for such a process,
the LMN is represented in discrete-time state space form, which is
then transformed into a feedback linearized normal representa-
tion. To determine the required feedforward input value for the
desired reference trajectory, an input transformation is utilized.
Therein the current and past model outputs are replaced by the
desired reference values. Besides an illustrative example, an
application of the presented approach, a microelectromechanical

Fig. 1. Two-degrees-of-freedom control scheme.
Fig. 2. Comparison of (a) the feedforward control law generation using feedback
linearization of a LMN plant model and (b) a direct data-driven control approach.
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