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Data based modeling applications require the complete automation of model creation of, in general,
nonlinear processes. Numerous model architectures are available to approximate complex data
structures, however, creating and selecting the best model provides a present challenge for application.
Model ensembles provide excellent strategies if the prediction performance of the models can be
assessed in some way. Information criteria approaches, trading off goodness of fit criteria against the
average variance error of the model structures, are theoretically applicable, but demonstratively perform
poorly in settings with sparse data sets and complex model structures, settings which are present for
many industrial purposes. This paper proposes and discusses a methodology how to regularise the
weight calculation building model ensembles. Thereby, the weights trade off goodness of fit criteria
against empirical measures of risk, increasing the model ensemble prediction performance. The
methodology is independent of the model class, applicable to all black box models, and improves
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prediction performance for a variety of data in several industrial application areas.
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1. Introduction

Demands for automation of statistical model building pro-
vide challenges for industrial application purposes. Optimal
control of industrial processes relies on the accurate modeling
of its components. For example, static emission models for
combustion engines are estimated in order to effectively cali-
brate the control variables, such as injection timing or exhaust
gas recirculation, to achieve optimal NO, and soot emissions
during a driving cycle. In general, one is interested in the causal
behavior of measured, real valued outputs, y, as a function of
some d-dimensional inputs, u, where, for simplicity, we restrict
the discussion to one-dimensional outputs. This so-called de-
terministic component of the process, f(u), say, is of interest for
future predictions and approximated by means of nonlinear
regression models. The error component, y(u)—f(u), captures
those components that are unpredictable by the inputs, espe-
cially stochastic components such as measurement noise, p, or
bias due to explanatory limitations.

This paper investigates the setting when a set of black box
models has been trained and it is up to the user to assess their
plausibility, but, possibly, little information on the model archi-
tecture is available. One may think of a setting, where the user
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knows the training data and some software builds neural net-
works of unknown structure approximating the data. The pre-
sumably best performing model can then be selected, or a new
model ensemble may be created as a weighted sum of the trained
models, see Buckland et al. (1997), Hansen (2007), Burnham and
Anderson (2002), and Claeskens and Hjort (2008). Opposed to the
existing literature it will be demonstrated that, for a wide range of
physical processes, a set of model ensembles can be created using
no information on the structure of the model at all. This can be
done building a Pareto frontier trading off training error against
empirical measures of risk. These model ensembles tend to per-
form particularly well when the data is sparsely distributed in the
input space. This is a particular characteristic for industrial mode-
ling, where outputs are to be estimated in areas where data cannot
be generated, or when the sample size is small. For example, data
allocation for engine emission models is often costly since the
number of test beds is limited, moreover, accurate measurements
are often time intense. If a statistical model of sufficient prediction
quality has been estimated, the measurement procedure may be
stopped. In this sense, the amount of necessary data becomes as
small as possible.

Consider one or several model architectures (or classes),
such as neural networks or kriging techniques, to choose from.
Within each model class a number of hyperparameters are
selected, such as the number of neurons and hidden layers in
neural networks, or some kernel function for kriging models.
Feedforward neural network structures provide powerful tools
since they are able to approximate smooth functions arbitrarily
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well (Hornik et al., 1989), however, the degree of approximation
is subject to the number of neurons in the network. Highly
complex structures are prone to overfit small sample data since
the parameter variance is large in this setting (Geman et al,,
1992). Automatisation of data modeling requires a reliable
assessment of each of the candidate model's prediction perfor-
mance. The ensemble weight corresponding to each model is
chosen according to its (relative) expected performance. It will
be shown that assessment of predictive performance will be
inaccurate, if (a) training data is sparse or (b) information on
the model structure is not available. It follows, that, the
predictive performance of model ensembles will be poor in
these settings.

Cross validation (CV) provides a technique to evaluate predic-
tive performance of each estimated model (Stone, 1974). Recently
proposed ensemble methods include bootstrap averaging (bagging)
and boosting. These algorithms generate a set of predictors by
retraining the models, using random subsets of the training data.
For discussion, see e.g. Breiman (1996) and Kotsiantis et al. (2006).
These methods require that the models are retrained several
times, which might become highly computationally expensive,
and bagging therefore has not been considered any further for this
reason. Information criteria (IC) approaches provide model quality
indicators, and are faster to compute than the CV or bagging
procedures. Here, the models are ranked according to IC score
values, which combine goodness of fit-indicators with potential
risk estimates. Usually, model training minimises a loss function
such as the negative log likelihood or the quadratic loss with
respect to available parameters. The obtained loss value will be a
biased estimator of the true loss, which is the predictive perfor-
mance if the model was used for future predictions. Standard IC
procedures penalise the estimated loss with the average loss bias
of the model class. Classic model selection criteria include the
Akaike Information Criterion (AIC) (Akaike, 1973), Mallows C,
(Mallows, 1973), and Schwarz's Bayesian Information Criterion
(BIC) (Schwarz, 1978). While the first two have been shown to
be asymptotically equivalent (Nishii, 1984), and optimal (Shibata,
1981), for linear regression models, the BIC is known to be
consistent (Sin and White, 1996). The classic information criteria
for linear models penalise the estimated loss with functions of the
number of parameters that give approximations to the loss bias.
The statistical theory has been discussed for general, nonlinear
model frameworks in Jones (1983) and for neural networks
specifically in Murata et al. (1994), Moody (1994), White (1989),
and Geman et al. (1992). Once IC score values have been computed
for the candidate models, it is advantageous to average the
estimators according to the scores. The two mostly used model
averaging methods are the exponential Akaike weights (Burnham
and Anderson, 2002; Claeskens and Hjort, 2008) and weights
mininising Mallow's equation (Hansen, 2007). The latter weight-
ing scheme performs asymptotically optimal in the sense of Li
(1987) for homoscedastic linear regression models. Li's concept of
optimality, as well as the Bayesian consistency property, is
unquestionably desirable but asymptotic properties. It has been
demonstrated in Anders and Korn (1999) that IC procedures
perform badly compared to statistical testing procedures when
the network models are overparameterised. Training a large
number of parameters of a complex model structure is particularly
problematic if the sample size is small. In this case, high variability
of the parameter estimates leads to bad prediction performance
and, even if the true model structure is known, it may be desirable
to use smaller models for prediction.

This paper investigates methods to rank, compare and average
models with as little knowledge on the model structure as
possible, and without retraining any network. For industrial
modeling, such as chemical reaction models, etc., one can often

expect the resulting function of interest to be smooth. The weight
calculation then should reflect this aversion to non-smoothness.
Not the model class itself should be penalised, but structure of the
estimated model. Prediction error estimates, and therefore,
ensemble weight calculation, perform badly when the training
data is sparse, i.e. data is not available in prediction areas. Here, it
will be demonstrated that error prediction can be improved, if the
empirical discrepancy between the model at the data and the area
of interest for prediction is taken into account. These empirical
complexity criteria can be computed for any black box model such
that the ensembles can be built for arbitrary model classes. It will
be demonstrated that the methodologies outperform standard
methods, especially the small data setting. The methods are
validated rigourously using several, partially publicly available,
data sets from various fields, including industrial emission data,
chemical, and medical data.

The outline of the paper is as follows: Section 2 revises model
selection criteria, including the AIC and Mallow's equation, with
emphasis on the application to nonlinear models structures, and
the underlying assumptions. Regularised model averaging with
empirical complexity measures is introduced and discussed in
Section 3. A neural network architecture used in the experimental
setup is briefly introduced in Section 4. Section 5 presents results
for real data and simulations verifying the proposed concepts on
artificial data. Section 6 concludes.

2. Model assessment

This section reviews the AIC formula, Mallow's equation, and
existing attempts to generalise the formulas to nonlinear model
structures. The model estimates will be denoted as j/j(~|0j), where
j=1...M and 6; denotes the model specific parameter vector that
is optimised to fit the data, e.g. regression coefficients. The models
may be of arbitrary structure. For example, the model y,(-|#;) may
denote a polynomial, and y,(-|6,) a feedforward neural network.
For the proposed purposes, it will only be assumed that the maps
(u,0,)~y;(u|0;) are sufficiently differentiable and all occurring
integrals exist. A model ensemble is defined as a weighted
combination of the models

M
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The weights wj; reflect relative expected performance. Most of the
present information criteria are derived in the following manner:
the parameters are assumed to have been trained to minimise
some loss function for a given set of data D = {[u,y], ..., [Un. Yn1}
such as
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For Gaussian, independent and identically distributed (i.i.d.) error
components, the likelihood is defined as
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where ¢ denotes the variance of the error component. The loss
function is a biased approximation of the (hypothetical) long run
performance, #(-) = limy_, .Zn(-), which is the actual target func-
tion. The training error, MSEpj, is an approximation of the ex-
pected out of sample prediction error, MSEp..q;, that can be
expressed via the [? norm, |- ||§, corresponding to an input
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