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a b s t r a c t

An adaptive control algorithm is presented for nonlinear vibration control of large structures subjected
to dynamic loading. It is based on integration of a self-constructing wavelet neural network (SCWNN)
developed specifically for structural system identification with an adaptive fuzzy sliding mode control
approach. The algorithm is particularly suitable when the physical properties such as the stiffnesses and
damping ratios of the structural system are unknown or partially known which is the case when a
structure is subjected to an extreme dynamic event such as an earthquake as the structural properties
change during the event. SCWNN is developed for functional approximation of the nonlinear behavior of
large structures using neural networks and wavelets. In contrast to earlier work, the identification and
control are processed simultaneously which makes the resulting adaptive control more applicable to real
life situations. A two-part growing and pruning criterion is developed to construct the hidden layer in
the neural network automatically. A fuzzy compensation controller is developed to reduce the chattering
phenomenon. The robustness of the proposed algorithm is achieved by deriving a set of adaptive laws
for determining the unknown parameters of wavelet neural networks using two Lyapunov functions. No
offline training of neural network is necessary for the system identification process. In addition, the
earthquake signals are considered as unidentified. This is particularly important for on-line vibration
control of large civil structures since the external dynamic loading due to earthquake is not available in
advance. The model is applied to vibration control of a continuous cast-in-place prestressed concrete
box-girder bridge benchmark problem seismically excited highway.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of articles have been published on linear vibration
control of civil structures over the past three decades (Yao, 1972;
Soong, 1990; Saleh and Adeli, 1994, 1996, 1998a, b; Yang et al., 1996,
2004) using a number of different algorithms developed in the
vibration control community such as LQR (for example, Adeli and
Saleh, 1997, 1998; Agrawal et al., 1997), LQG (Soong, 1990; Amini
et al., 2013), Proportional-Integral-Derivative (PID) type controllers
(Nigdeli and Boduroğlu, 2013), and H1 (Chase and Smith, 1996). The
great majority of these papers deal with small academic problems
where the structure is modeled as a two-dimensional (2D) structure
with a few degrees-of-freedom or large structures assuming the
controlled structure behaves linearly.

Vibration control of large nonlinear structures remains a challen-
ging problem because of (a) unknown time-varying properties of
structural systems and (b) uncertainties existing in both structural

system identification and external excitations such as those due to an
earthquake. Sliding mode control (SMC) has been used as a compe-
titive control approach in civil structures Yang et al. (1996) applied the
sliding mode control to a seismically-excited 3-story building isolated
by a frictional sliding-isolation system and reported its effective-
ness based on experimental test results. Singh et al. (1997) applied
the SMC approach to a seismically-excited 10-story two-dimensional
(2D) frame. Sarbjeet and Datta (2000) applied the sliding mode
control strategy to a 20-story 2D frame subjected to a narrow band
ground excitation and report more reduction in displacements com-
pared with conventional linear control strategies such as LQR. Comb-
ing the concept of fuzzy logic (Kodogiannis et al., 2013; Rigatos, 2013;
Yan and Ma, 2013; Fougères and Ostrosi, 2013) with SMC, Kim
and Yun (2000) proposed a fuzzy sliding mode control (FSMC) for a
three-story benchmark building considering actuator–structure inter-
action, sensor noise, actuator time delay, precision of the analog-to-
digital (A/D) and digital-to-analog (D/A) converters, control force
saturation range, and order of the control model. They report
improved performance for FSMC compared with other control algo-
rithms such as H2/1 control, optimal polynomial control, neural
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networks-based control, and SMC. Using a distributed parameter
system equipped with active tuned mass dampers (ATMDs), Wang
and Lin (2006) indicate that FSMC is more economical and practical
than a variable control algorithm such as SMC (a variable high-
frequently switching feedback control where the control gains in each
feedback path switch between two values according to some rule) in
terms of controlling force and control energy use when applied to a
seismically excited three story reinforced-concrete building. Wu
(2003) and Wu and Yang (2004) use a pre-filtered sliding mode
control method to reduce the response of a seismically-excited three-
story building and demonstrate its performance through shaking table
experimental tests of a full-scale building equipped with active bracing
systems. They also applied it to wind-induced vibrations of a 76-story
high rising building. Lee et al. (2004) apply SMC to a 3-story frame
considering controller saturation. Ning et al. (2009) apply an FSMC
control to the seismically excited nonlinear benchmark bridge pre-
sented in Agrawal et al. (2009).

SMC, however, has a shortcoming for application to large civil
structures rarely discussed in the literature. Controlled responses
from sliding mode control are highly sensitive to the bounds of
structural system uncertainties and weighing matrices of the sliding
surface. A small sliding bound may cause instability in vibration
control of structures, while a large sliding bound will lead to the so-
called chattering effect which means the sign of the control force
changes rapidly and frequently within a short time period caused by
a discontinuous switching function (usually a discontinuous sign
function). This chattering effect can be reduced by using a continuous
approximation of the discontinuous sliding mode controller, but it
may cause system instability (Leu et al., 2009). To overcome the
chattering phenomena while maintaining system stability, a fuzzy
compensation controller is sometimes designed to model system
uncertainties and function approximation errors (Hsu et al., 2009).

Neural networks (NNs) can be used for universal approximation
of both linear and nonlinear functions (Hung and Adeli, 1993;
Senouci and Adeli, 2001; Zhang and Ge, 2013; Vlahogianni and
Karlaftis, 2013; Boutalis et al., 2013; Cona and Ursino, 2013; Story and
Fry, 2014; Butcher et al., 2014; Khalid et al., 2014). Traditional NNs
consist of multiple layers with a sufficient number of nodes in each
hidden layer and adjustable weights (Cen et al., 2013; Cabessa and
Siegelmann, 2014). They suffer from some common drawbacks such
as lack of an efficient constructive model resulting in an arbitrary
selection of the number of hidden nodes, slow convergence rate, and
entrapment in a local minimum. Control algorithms based on this
type of NN require extensive off-line training.

To overcome the aforementioned drawbacks of classical NNs
used for system control and/or identifications, radial basis function
(RBF) neural networks (Alexandridis, 2013; Zhou et al., 2013) have
been used to simplify the network structure and reduce computa-
tional burden where Gaussian functions are generally used as the
basis functions (Chen et al., 1990). These offline RBF-based NNs are
further improved by using a resource allocating network (RAN)
algorithm (Platt, 1991), which adds new hidden neurons depending
on the input characteristics and output errors, where the weights
connecting hidden layer and output layer are updated based on a
least mean square (LMS) criterion. Two modifications of RAN are:
(1) the replacement of the LMS criterion with extended Kalman
Filter (EKF) (Kadirkamanathan and Niranjan, 1993) which improves
the network compactness, and (2) using a pruning criterion which
is able to remove hidden neurons that are less influential to the
output in order to make the network more compact (Lu et al., 1997,
1998). A network based on these two improvements is generally
referred to as minimal resource allocation network (MRAN).

As an extension of MRAN, the extended MRAN (EMRAN) was
introduced subsequently (Irwin et al., 1995; Li et al., 2000; Wang et
al., 2002). Rather than updating the parameters of all hidden neurons
in each time step in MRAN, EMRAN allocates new hidden nodes

(called Gaussian nodes) using a growing/pruning criterion, which
means the number of nodes is reduced if the network can accurately
approximate the unknown system given an allowed error range, and
is increased if the error is outside the range. Gaussian nodes are able
to store characteristic information of the unknown system. Each
Gaussian node responds only to the local region of the input space.
Only those parameters of a given node closest to the selected winner
node are updated. As such, the learning patterns are not fully
repeated as a result of the local updating process. The EMRAN
algorithm reduces the computational time compared with MRAN
(Li et al., 2000) and therefore is more suitable for online adaptation of
high order unknown nonlinear systems. However, the EMRAN
algorithm cannot ensure the stability of control models. A learning
algorithm based on the Lyapunov function may be used to guarantee
system stability (Gao and Er, 2003; Hsu, 2007).

Adeli and Kim (2004) introduced the concept of wavelet (Perez
et al., 2014; Katicha et al., 2014) in structural control. They present a
wavelet-hybrid feedback Least Mean Squared (LMS) algorithm (Kim
and Adeli, 2004) for robust control of civil structures and demon-
strate its effectiveness to vibration control of large irregular building
structures subjected to seismic loading in an arbitrary direction (Kim
and Adeli, 2005a), wind-excited motion of a 76-story building
benchmark example (Kim and Adeli, 2005b), and a cable-stayed
bridge subjected to seismic loading (Kim and Adeli, 2005c).

Compared with the Gaussian radial basis functions, wavelet basis
functions yield more compact and efficient system representations
while preserving global closed-loop stability if a proper adaptive law
is used to train the neural network (Cannon and Slotine, 1995). A
wavelet neural network (WNN) model was proposed by Zhang and
Benveniste (1992) for signal processing. Hung et al. (2003) applied
WNN to system identification of civil structures. Adeli and Jiang
(2006) modified WNN using fuzzy logic to achieve a more efficient
constructive model and higher identification accuracy. Their mod-
ified fuzzy WNN model is based on adroit integration of four
different computing concepts: dynamic time delay neural network,
wavelet as the basis function, fuzzy logic, and the state space
reconstruction based on the chaos theory (Jiang and Adeli, 2003).
They used a Mexican hat wavelet in their WNN model because (a) its
analytical expression makes it amenable for both differentiation of
multiple dimensional time series, and (b) it provides computational
efficiency (Zhou and Adeli, 2003). They employ chaos theory to
model the complicated and unknown nonlinear dynamics of
structure-earthquake system which requires determining an appro-
priate embedding dimension for which they use the false nearest
neighbor method. The input dimension of a time series can be
obtained using Takens' embedding theorem for structural identifica-
tion (Adeli and Jiang, 2006). The number of wavelet neurons in the
hidden layer of their WNN model is determined by a self-
constructing method using the Akaike's final prediction error (AFPE)
criterion. Their model works well when the time series for training
data is available. Amini and Zabihi-Samani (2014) discuss a wavelet-
based time varying pole assignment method to control seismic
vibrations of a multi-degree of freedom frame structure.

The selection of the number of nodes in the hidden layer is
crucial for obtaining consistently accurate approximations with a
reasonable computational cost. A trial-and-error method was
generally used in earlier approaches to obtain the most suitable
value for the number of nodes in the hidden layer using the
NARMAX approach (Hung et al., 2003). That approach is time-
consuming, does not provide a rational basis for the selection of
the number of nodes in the hidden layer, and cannot guarantee
accurate approximations. In order to determine the number of
nodes in a neural network model for real-time control of nonlinear
dynamic systems, a self-constructing method without a priori
knowledge may be used. Researchers have introduced self-orga-
nizing/self-constructing algorithms to dynamically adapt the
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