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a b s t r a c t

Diagnosis is the process of identifying or determining the nature and root cause of a failure, problem, or
disease from the symptoms resulting from selected measurements, checks or tests. The different facets of
this problem and the wide spectrum of classes of systems make it interesting to several communities and
require bridging several theories. Diagnosis is actually a functional fragment in fault management
architectures and it must smoothly interact with other functions. This paper presents diagnosis as it is
understood in the Control and Artificial Intelligence fields, and exemplifies how different theories of
these fields can be synergistically integrated to provide better diagnostic solutions and to achieve
improved fault management in different environments.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The goal of diagnosis is to identify the possible causes explain-
ing a set of observed symptoms. A set of concomitant tasks
contribute to this goal and the following three tasks are commonly
identified:

� fault detection, which aims at discriminating normal system
states from abnormal ones, i.e. states which result from the
presence of a fault,

� fault isolation, also called fault localization, whose goal is to
point at the faulty components of the system,

� fault identification, whose output is the type of fault and
possibly the model of the system impacted by this fault.

Faced with the diversity of systems and different views of the
above problems, several scientific communities have addressed
these tasks and contributed with a large spectrum of methods. The
Signal Processing, Control and Artificial Intelligence (AI) commu-
nities are leading actors in this field.

Diagnosis is carried out from the signals that permit efficient
fault detection toward the upper levels of supervision that call for
qualitative interpretations. Proposing relevant abstractions to
interpret the available signals is hence a key issue.

Signal processing provides specific contributions in the form of
statistic algorithms for detecting changes in signals, hence

detecting faults. This remains out of the scope of this paper and
has been surveyed in several reference books and papers
(Basseville, 1988; Basseville and Nikiforov, 1993; Basseville et al.,
2004; Fillatre and Nikiforov, 2007; Fouladirad et al., 2008).

Interfaces between continuous signals and their abstract inter-
pretations, in symbolic or event-based form, implement qualita-
tive interpretations of the signals that are required for supervision.
To do that, discrete formalisms borrowed from AI find a natural
link with continuous models from the Control community. These
two communities have their own model-based diagnosis track:

� the FDI (Fault Detection and Isolation) track, whose founda-
tions are based on engineering disciplines, such as control
theory and statistical decision making,

� the DX (Diagnosis) track, whose foundations are derived from
the fields of logic, combinatorial optimization, search and
complexity analysis.

In the last decade, there has been a growing number of researchers
in both communities who have tried to understand and bridge FDI
and DX approaches to build better, more robust and effective
diagnostic systems.

Data-based diagnosis approaches based on machine learning
techniques, such as pattern recognition (Fukunaga, 1990; Denoeux
et al., 1997), are present in both the Control and AI communities
and complement model-based approaches to provide solutions to
a variety of diagnostic problems where the difficulty arises from
the scarce nature of the instrumentation or, conversely, from the
massive amounts of data to be interpreted to extract hidden
knowledge. Interesting bridges also arise when we consider
data-based and model-based approaches.
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Other bridges can be found when considering that diagnosis is
not a goal per se but a component in fault management archi-
tectures. It takes part in the solutions produced for tasks such as
failure-mode-and-effects analysis, sensor placement, on-board
recovery, condition monitoring, maintenance, repair and therapy
planning, and prognosis. The contribution of diagnosis in such
architectures requires close links with decision tasks such as
control and planning and calls for innovative integrations.

In this paper, different facets of diagnosis investigated in the
Control or the AI fields are discussed. While Venkatasubramanian
et al. (2003a, 2003b, 2003c) provide three interesting surveys of
the different approaches that exist in these fields, this paper aims
at reporting the works that integrate approaches of both sides,
hence creating “bridges”. In particular, the concepts and results of
the FDI and DX tracks are put in correspondence and the lessons
learned from this comparative analysis are pointed out. Causal
model-based diagnosis is presented as a typical example of integra-
tion of FDI and DX theories, in which fault detection is implemented
along an FDI approach and fault isolation calls for the logical DX
framework. Hybrid model-based diagnosis is then used to illustrate
several interesting bridges, in particular, how FDI estimation schemes
can be combined with search algorithms rooted in AI to achieve
hybrid state tracking efficiently. Combining FDI estimation filters
with the logical DX theory is also illustrated. Finally, it is shown that
the hybrid model-based diagnosis problem can also find a solution
by combining the FDI approach with the so-called diagnoser
approach of the discrete event systems (DES) field. Subsequently,
learning the models that support diagnosis reasoning is shown to be
a rich field for bridging theories. It has been intensively investigated
for continuous model identification for which regression analysis is
essential. Learning discrete event models calls for other bridges,
which are illustrated with chronicle learning. Finally, diagnosis is
discussed in relation with theories that participate to provide global
solutions to fault management problems. On one hand, autonomous
architectures exemplify the integration of diagnosis, control and
planning. On the other hand, it is shown how diagnosis can enhance
prognosis in condition maintenance architectures.

The paper is organized as follows. After the Introduction
section, Section 2 first presents a brief overview of the approaches
proposed by the FDI and DX model-based diagnosis communities.
Although quite commonplace, this overview is necessary because
it provides the basic concepts and principles that form the
foundations of any diagnosis method. It is followed by the
comparison of the concepts and techniques used by these com-
munities and the lessons learned from this comparative analysis.
Section 3 is concerned with the trends that integrate and take
advantage of techniques from both sides, in particular causal
model based diagnosis in Section 3.1 and diagnosis of hybrid
systems in Section 3.2. Section 4 then raises the problem of
obtaining the models supporting diagnosis reasoning and dis-
cusses bridges that can contribute to learning them in an auto-
mated manner. Section 5 widens the scope of diagnosis and is
concerned with diagnosis as a component of fault management
architectures, discussing the several links with control and plan-
ning. Finally, Section 6 concludes the paper.

2. DX and FDI model-based diagnosis bridge

The FDI and DX streams both consider the diagnosis problem
from a system point of view, which results in significant overlaps.
Even the name of the two tracks is the same: Model-Based
Diagnosis (MBD).

The diagnosis principles are the same, although each commu-
nity has developed its own concepts and methods, guided by
different modeling paradigms and solvers. FDI relies on analytical

models, linear algebra, and non-linear system theory whereas DX
takes its foundations in logic. In the 2000s, catalyzed by the
“Bridging AI and Control Engineering model-based diagnosis
approaches” group, known as the BRIDGE (2000) group, within
the European Network of Excellence MONET II (MONET), and its
French counterpart, the “Intégration de Méthodes Alliant Automa-
tique et IA” group, known as the IMALAIA group, supported by GDR
MACS (2000), GDR-I3 (2000), as well as AFIA, there were more and
more researchers who tried to understand and synergistically
integrate methods from the two tracks to propose more efficient
diagnostic solutions. This collaboration launched several events:

� a BRIDGE Workshop in 2001 in the framework of DX'01, the
12th International workshop on Principles of Diagnosis, Sansi-
cario, Via Lattea, Italy, 5–9 Mars 2001 (DX'01, 2001).

� the co-location, in Washington DC (USA), of the two main
events of the FDI and the DX community, namely the IFAC
International Symposium on Fault Detection, Supervision and
Safety for Technical Processes SAFEPROCESS’03 and the Interna-
tional Workshop on Principles of Diagnosis DX'03, including a
BRIDGE Workshop in the form of a join day.

These events were followed by the publication of a special issue
of the IEEE SMC Transactions, Part B, on the topic “Diagnosis of
Complex Systems: Bridging the methodologies of the FDI and DX
Communities” in 2004 (Biswas et al., 2004). The BRIDGE track was
launched and paved its way until today. Other events followed like
the two invited sessions “AI methods for Model-based Diagnosis”
and “Bridge between Control Theory and AI methods for Model-based
Diagnosis”, recently organized in the framework of the 7th IFAC
International Symposium on Fault Detection, Supervision and Safety
of Technical Processes SAFAPROCESS'09, Barcelona, Spain, 30 July–3
August 2009.

The next subsections first summarize the foundations of the
FDI and DX approaches, then proceed with a comparative analysis
that allows us to draw some practical assessments in the form of
lessons learned. The lessons summarize the respective strengths
and weaknesses of the two approaches and provide the guidelines
that drive the proposals combining the two approaches.

2.1. Brief overview of FDI approaches

The detection and diagnosis methods of the FDI community
rely on behavioral models that establish the constraints between
system inputs uAU and outputs yAY , gathered in the set of
measurable variables Z, and the system internal states defining the
set of unknown variables X. The variables zAZ and xAX are
functions of time. The typical model may be formulated in the
temporal domain, then known as a state-space model:

BM : dx=dt ¼ f ðxðtÞ;uðtÞ;θÞ
OM : yðtÞ ¼ gðxðtÞ;uðtÞ;θÞ: ð1Þ
where xðtÞARnx is the state vector, uðtÞARnu is the input vector
and yðtÞARnp is the output vector. θARnθ is a constant parameter
vector. The components of f and g are real functions over R. BM is
the behavioral model and OM is the observation model. The whole
system model is noted SMðz; xÞ, like in Krysander et al. (2008), and
assumed noise-free. The equations of SMðz; xÞ may be associated to
components but this information is not represented explicitly. The
models can also be formulated in the frequency domain, for
instance in the form of transfer functions in the linear case.

Models are used in three families of methods:

� the methods based on parameter estimation that focus on the
value of parameters as representing physical features of the
system,
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