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Coupling conventional controller design methods, model based controller synthesis and simulation, and
multi-objective evolutionary optimisation methods frequently results in an extremely computationally
expensive design process. However, the emerging paradigm of grid computing provides a powerful
platform for the solution of such problems by providing transparent access to large-scale distributed
high-performance compute resources. As well as substantially speeding up the time taken to find a single
controller design satisfying a set of performance requirements this grid-enabled design process allows a
designer to effectively explore the solution space of potential candidate solutions. An example of this is in
the multi-objective evolutionary design of robust controllers, where each candidate controller design has
to be synthesised and the resulting performance of the compensated system evaluated by computer
simulation. This paper introduces a grid-enabled framework for the multi-objective optimisation of
computationally expensive problems which will then be demonstrated using and example of the multi-
objective evolutionary design of a robust lateral stability controller for a real-world aircraft using H.,

loop shaping.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Modern aircraft consist of many complex subsystems, all of
which require robust and reliable control. These systems are often
multi-variable, consisting of multiple inputs and multiple outputs,
and frequently the desired responses of a subsystem are in conflict
with each other (for example, a controller design that achieves the
minimum possible overshoot of the plant often requires accepting
a slower rise time than might otherwise have been achieved).

Whilst conventional robust controller design methods such
as H,, or LQG control can be effectively used to create controllers
that are robust both to modelling uncertainties and to cross-
coupling between channels in complex multi-variable systems,
the resulting controlled system often performs unsatisfactorily.
One approach to overcoming this problem is by coupling novel
evolutionary multi-objective optimisation techniques with these
conventional controller design methods. This provides the engineer
with a set of powerful tools for addressing complex multi-variable
problems with performance constraints (Fleming and Purshouse,
2002). This type of integrated multi-objective optimisation approach
to the design of robust controllers has been successfully used for the
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design of fixed structure robust H,, controllers (Wang and Li, 2011),
as well as forming the basis of a novel multi-objective PID controller
design procedure (Reynoso-Meza et al., 2012, 2013). However, such
methods are frequently computationally expensive, requiring many
thousands of controller designs to be evaluated.

Grid computing offers one potential solution to the computation-
ally expensive nature of this evolutionary controller design process.
The grid computing paradigm aims to provide “a hardware and
software infrastructure that provides dependable, consistent, perva-
sive, and inexpensive access to high-end computational capabilities”
(Foster and Kesselman, 1999). This paradigm is differentiated from
traditional approaches to distributed computing by its emphasis
on providing “a seamless, integrated computational and collaborative
environment” (Baker et al, 2002) for the solution of complex
problems by allowing coordinated resource sharing across dynamic
virtual organisations (Foster et al., 2001). By coupling evolutionary
multi-objective optimisation techniques with the large scale distrib-
uted high performance computing resources offered by the grid
computing paradigm, engineers and designers can effectively address
many complex, computationally expensive multi-variable problems —
including those that require the synthesis of robust controllers as
part of the evaluation process. Grid-enabled optimisation of single
objective engineering design problems has been successfully inte-
grated into both computer aided engineering workflows (Weng et al.,
2012) and multi-disciplinary design workflows (Lee et al., 2009) to
provide easy access to powerful real-time analysis and optimization
routines. This allows a potential reduction in both design cycle times
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and development costs, with a commensurate improvement in
product quality.

The purpose of this paper is to describe a grid-enabled frame-
work for evolutionary multi-objective design. This framework will
then be applied to the design of a robust controller for the flight
dynamics of a real-world aircraft — a complex problem with many
(often conflicting) objectives to consider. The paper is organised as
follows: Section 2 will provide a brief introduction to evolutionary
algorithms, their use in control systems engineering and their
application to multi-objective optimisation problems; Section 3
will describe the grid computing paradigm in detail and highlight
some of the key features that are used in the development of the
optimisation framework; Section 4 will discuss the implementation
of the grid-enabled framework for multi-objective evolutionary opti-
misation; Section 5 will demonstrate the use of the grid-enabled
optimisation framework in designing robust control systems for the
lateral stability of aircraft; and Section 6 will present our conclusions
and outline some ideas for further work.

2. Multi-objective evolutionary algorithms
2.1. Background to evolutionary algorithms

Evolutionary Algorithms (EAs) utilise some of the concepts
behind natural selection and population genetics to iteratively
evolve a population of candidate solutions to a problem (Goldberg,
1989). They both explore the solution space of a problem (by using
variation operators such as mutation and recombination) and
exploit valuable information present in the previous generation
of candidate solutions (by using a selection operator). The trade-
off between exploration of undiscovered regions of the solution
space and exploitation of promising areas already discovered by
the algorithm is extremely important: too much exploration and
the algorithm will take too long to converge on a useful solution,
too much exploitation and the algorithm may converge prema-
turely to local optima. Obtaining a correct balance between
exploration of the solution space and exploitation of promising
solutions is somewhat of a “black art” (Purshouse, 2003), with
little guidance available in the literature on setting the parameters
that control this balance. Some promising results have been
obtained using computational steering frameworks to allow these
parameters to be altered during the run-time of the algorithm
(Bullock et al., 2002; Shenfield et al., 2007), but this can be time-
intensive and requires the engineer to have a good knowledge of
both the optimisation problem and the algorithm design. Another
potential solution is to use some kind of self~adaptation to dynamically
change the balance between exploration and exploitation as the
algorithm runs (Beyer, 1995; Igel et al., 2007).

One of the main reasons evolutionary algorithms are applicable
across many different problem domains (including those where
conventional optimisation techniques may struggle) is their use
of evaluation function information directly, rather than derivative
information or other auxiliary knowledge. For many non-trivial
real-world applications this evaluation function information is
obtained by computer simulation of the system. For example, in
the optimisation of maintenance schedules for gas turbine aero-
engines (Shenfield et al., 2010), the cost information for each
schedule is obtained by the computer simulation of a candidate
solution over a time period of 25 years. However, this use of
computer simulation to obtain evaluation function information
leads to some additional problems. To ensure that the results
gained from the evolutionary algorithm accurately represent
the real-world system, the simulation must be complex enough
to capture all the relevant dynamics of the true system. Assuming
that this level of complexity is obtainable, this can often lead to the

simulation becoming very computationally expensive. Since EAs
are both iterative and population based, the simulation may have
to be run several thousand times which increases the computa-
tional requirements (in terms of computer clock cycles) of the
optimisation process significantly.

2.2. Multi-objective evolutionary algorithms

Many real-world engineering problems involve the satisfaction of
several, often conflicting, objectives. The general form of a multi-
objective optimisation problem can be characterised by a vector of
objective functions, f, and the corresponding set of decision variables,
X, as (note that minimisation can be assumed here with no loss of
generality)

rr}in(x) =(f1(X), ... f () M

In this case it is unlikely that a single optimal solution will exist.
Instead, the solution of this kind of multi-objective problem leads
to a set of Pareto optimal points, where any improvement in one
objective will lead to a deterioration in one or more of the other
objectives.

A set of non-dominated solutions' generated by a multi-objective
optimisation algorithm is known as an approximation set (Zitzler
et al., 2003) and the quality of this set can be characterised by three
main performance indicators (Purshouse, 2003):

® The proximity of the approximation set to the true Pareto front.

® The diversity of the distribution of solutions in the approxima-
tion set.

® The pertinency of the solutions in the approximation set to the
decision maker.

These concepts are illustrated graphically in Fig. 1, where it can be
seen that the ideal approximation set produced by an optimiser
should be both as close as possible to the true Pareto front (i.e. having
good proximity) and provide a uniform spread of solutions across the
region of interest of the decision maker (i.e. having a diverse set of
candidate solutions that are pertinent to the decision maker).

Conventional multi-objective optimisation methods (such as
the weighted sum method Hwang and Masud, 1979 and the goal
attainment method Gembicki, 1974) often struggle to satisfy these
requirements in the optimisation of real-world engineering pro-
blems as they can find only a single point from the approximation
set rather than a diverse distribution of potential solutions. This
means that a decision maker cannot fully understand the shape of
the trade-off space (and thus know whether the a priori trade-offs
they have chosen are appropriate) without running the optimisa-
tion routine many times. However, since evolutionary algorithms
search a population of candidate solutions in parallel, they are able
to find multiple non-dominated solutions from this approxim-
ation set. This provides the decision maker with a set of potential
solutions to choose from, rather than a single solution that may
not meet the required performance criteria.

A further complication in the application of optimisation routines
in real-world engineering design problems is that the optimiser
is often required to deal with a large number of objectives. This
has led to interest amongst the research community in the area of
many-objective optimisation.> The increased scale of many-objective

! A solution in non-dominated if there exists no other solution in the set of
current candidate solutions that is better in all objectives.

2 The phrase many-objective has been suggested in the Operations Research
(OR) community to refer to problems with more than the standard two or three
objectives (Farina and Amato, 2004).
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