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Stochastic Gradient Descent (SGD) is one of the most popular first-order methods to solve optimization
problems in large-scale, which has also been widely studied in intelligence system, deep neural networks,
or machine learning. In this paper we set out to revisit SGD with practical concerns in mind and hope to
provide intuition on how SGD should be done in the right way in applications for expert and intelligence
systems.

In literature, when implementing SGD, regularization is often added to the loss function, to avoid ill-
conditioning or overfitting, or to obtain solutions with desirable sparse structure. Intuitively, regularized
loss function deviates from the true loss and in this case SGD may lead to a suboptimal solution. In
this paper we revisit the matter of I, regularization for SGD, to investigate whether or when an explicit
regularizer is necessary to obtain the desirable performance. We further introduce a simple stochastic
algorithm (ASG) using the accumulated stochastic gradient of the un-regularized loss. Then experiments
are carried out on benchmark data sets to validate the theoretical analysis.

The findings show that for I, regularization, (1) SGD without explicit regularizing (SGDE) actually
possesses an implicit regularizer, and in the sense of upper bound of the convergence rate, it outper-
forms SGD regularized explicitly (SGDER) with a constant advantage; (2) ASG without explicit regulariz-
ing outperforms both SGDE and SGDER, especially in the case where the number of iteration T cannot
be pre-specified; (3) for SGD algorithms, the schemes that places flexible weight on the output of the
latest iteration can give a better trade-off, compared with the scheme using the output of the last itera-
tion or taking the average of the output of each iteration, and this suggests that in application a tunable
averaging scheme is preferable.

This study provides insights on using SGD algorithms for big data applications, e.g., to accelerate SVMs
or regularized regression in large-scale, or to improve the performance of online learning or real time
forecasting (control). In particular, when T is pre-specified, SGDE (without an explicit regularizer) can
give us a well enough perforce with simplicity and understandability; when T cannot be pre-specified,
ASG can improve the performance of standard SGD algorithms.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

monitoring of a control system, to predict and assess the health
conditions of a patient, among many others. This ability becomes

To ability to learn from observations, to classify and to make
decisions accordingly is crucial for many expert systems, such as
to predict quality of a manufactory system, to achieve real-time
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more challenging to achieve when we consider a large-scale learn-
ing problem, many often due to the requirement of heavy compu-
tations. In this paper, we revisit the classical stochastic gradient de-
scent algorithms (SGD) method, which is widely deployed for the
purpose of optimization and classifier training in these systems.
As a general optimizing solver, stochastic gradient descent
(SGD) (Borkar, 2008; Léon, 2012) and its varieties have received
great interests in a wide range of literature, including informed
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search (Russell & Norvig, 2016; Zheng, Han, Wang, & Xiao, 2018),
convex optimization (Alexander, Shamir, & Sridharan, 2012; Hazan
& Kale, 2014; Shalev-Shwartz, Shamir, Srebro, & KarthikSridharan,
2009; Shalev-Shwartz, Singer, Srebro, & Cotter, 2011; Shamir &
Zhang, 2013), reinforcement learning (Pendharkar & Cusatis, 2018;
Sutton & Barto, 2018), deep neural networks (Goodfellow, Bengio,
& Courville, 2016; Jurgovsky et al., 2018; Nweke, Teh, Al-garadi, &
Alo, 2018) or neural networks based expert systems (Gallant, 1993).
It stands out as one of the most popular first-order methods
for solving optimization problems (Léon & Olivier, 2008; Shalev-
Shwartz & Srebro, 2008), particularly for the large-scale optimiza-
tion problems (in big data) owing to its simplicity and scalability.
In particular, it can be used, for instances, to train SVMs (Shalev-
shwartz, Singer, & Srebro, 2007; Theodoridis, 2015; Zhou & Jiang,
2018) or convolutional neural networks (Ferreira, Correa, Nonato, &
de Mello, 2018), to develop online algorithms for intelligent driv-
ing (Cheng, Chen, Cheng, & Zheng, 2017), or to search the optimum
solution in non-convex scenarios (Gan, Cao, Wu, & Chen, 2018).

In this paper, we focus on SGD for convex programming prob-
lems. Formally, consider the following problem of minimizing an
objective defined over a closed convex domain W:

weil}vlF(W) =Ezf(w;2),

where for any z~Z, flw; z) is a convex function of w. The goal is
to find a w to minimize F(w) given i.i.d. samples z;,z;,... drawn
independently form an unknown distribution Z. SGD sequentially
queries the gradient (or more generally, the subgradient) oracle
and updates w; iteratively as follows

Wepr = IMw(We — 1:&t).

where Iy is the orthogonal projection on W, y; is the learning
rate at step t and Eg; is a subgradient of F at we. Initially, we re-
quire wy € W and throughout the paper we will simply let w; = 0.
After a number of (e.g., T) steps, SGD produces an approximate so-
lution W, e.g., by setting

1T
W=Wwr = TZwt.
=1

The rate of convergence of E[F(W)]|— minyepy F(w) is often
adopted as a measure of performance, where the expectation is
taken over the randomness in the gradient oracle. It can be ex-
pected that the number of calls (T) limits the precision of the ap-
proximate solution and the convergence rate of SGD.

To stabilize the computation, or to avoid overfitting or ill-
conditioning or to obtain sparse solutions, regularization tech-
niques have been widely discussed (Ferreira et al., 2018; Goodfel-
low et al., 2016; Hastie, Tibshirani, & Wainwright, 2015; Richhariya
& Tanveer, 2018; Theodoridis, 2015). A typical way to regularize
is via introducing an extra term called Regularizer, as adopted in
SVMs (Jia-Zhi DU, WU, DONG, & ZUO, 2018; Jiang & He, 2012; Jiang
& Wang, 2010; Shalev-Shwartz et al., 2007) or regularized regres-
sion (Ahn, Byun, Oh, & Kim, 2012; Hastie et al.,, 2015; Hoerl &
Kennard, 1970; Hussein, Elgendi, Wang, & Ward, 2018; Tibshirani,
1996). Specifically, in this case f is a combination of both the loss
function and the regularizer, i.e.,

fw:2) = t((w. ¢(2)).2) + R(w),

where ¢ is a chosen convex loss and R the regularizer (e.g., R(-) =
|- ||§ for the classic ¢,-SVM or ridge regression). In this case, the
loss function is regularized before applying SGD, and the perfor-
mance of SGD is then studied for f. Intuitively, in this case, f,
the to-be-optimized objective, deviates from the true objection
¢ that should be optimized. This casts doubts on how the out-
put from running SGD on f will perform on optimizing £(w) =

EZ[€(<Ws ¢(Z)>9Z))]-

In this paper we revisit the matter of I, regularization for SGD,
to investigate whether or when an explicit regularizer is necessary
to obtain a desirable performance on £(w). In particular, the SGD
algorithm using the gradient of £ (without an explicit regularizer)
and the SGD algorithm using the gradient of F (I, regularized) are
closely studied, and they are denoted respectively by SGDE and
SGDER. Further, based on above investigation, we introduce a sim-
ple (but with a constant advantage over standard SGD) stochastic
averaging method which uses the accumulated stochastic gradient
of the loss without any explicit regularizer (denoted by ASG).

The main contributions of this paper summarize as follows.

o We show that in the sense of the upper bound of the conver-
gence rate on the true loss ¢, SGDE without an explicit regular-
izer has a constant factor, e.g., of 1/+/2 advantage over SGDER
which is I, regularized. This result may be explained by observ-
ing that there is equivalently a “regularizer” for SGD in the case
where a regularizer is not explicitly added.

When implementing SGDE, the standard analysis, as presented
in Zinkevich (2003) or Shamir and Zhang (2013) may not be ap-
plicable when there is no projection step performed. In practice
the cost of projection steps may not be ignored and it is espe-
cially true for large-scale problems in big data. We present a
simple algorithm using the accumulated stochastic gradient of
the expected loss without regularizer (ASG) to avoid this issue.
The algorithm further shows a provable constant factor, e.g., of
1/2 advantage over standard SGD algorithms in the sense of the
upper bound.

Our results provide insights on using SGD algorithms for big
data applications, e.g., to accelerate the training of different
kinds of SVMs (Jiang & He, 2012; Jiang & Wang, 2010; Rich-
hariya & Tanveer, 2018; Zhou & Jiang, 2018) or regularized re-
gression (Ahn et al., 2012; Hoerl & Kennard, 1970; Theodoridis,
2015) in large-scale, or to improve the performance of online
learning algorithms (Cheng et al., 2017; Xiang, Zhang, Gu, & Cai,
2018). In particular, when the iteration number T can be pre-
specified, SGDE (without an explicit regularizer) can give us a
decent performance on the expected loss; when T cannot be
specified in advance as often occurs in online learning scenarios
(He, Kwok, Zhu, & Liu, 2017), ASG can improve the performance
of standard SGD algorithms.

For SGD algorithms, the scheme using the last output as the
solution may perform with undesirable fluctuations and the
scheme that simply takes the average of the output of each it-
eration also does not guarantee a performance improvement.
The schemes that place flexible weights on the latest output
can give a better trade-off, which suggests that, for SGD algo-
rithms in application, a tunable averaging scheme may improve
the performance.

The remainder of the paper is organized as follows.
Section 2 discusses the related work. Section 3 provides a ba-
sic review on SGD using the regularized and unregularized
expected loss, and some intuitive ways to understand averaging
schemes that are helpful for SGD algorithms. Section 4 analyzes
and compares the theoretical aspects of SGD algorithms in cases
using the gradient of the regularized and unregularized expected
loss, and further introduces a static learning step size for SGD
in case when T can be pre-specified. The method using the ac-
cumulated stochastic gradient (ASG) is presented and analyzed
in Section 5. Experimental results are reported in Section 6, and
the last section gives some concluding remarks. The proofs of the
main results are included in the Appendix A.
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