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a b s t r a c t 

Inverse reinforcement learning ( IRL ) is a powerful tool for teaching by demonstrations, provided that 

sufficiently diverse and optimal demonstrations are given, and learner agent correctly perceives those 

demonstrations. These conditions are hard to meet in practice; as a trainer cannot cover all possibilities 

by demonstrations, he may partially fail to follow the optimal behavior. Also, trainer and learner have 

different perceptions of the environment including trainer’s actions. A practical way to overcome these 

problems is using a combination of trainer’s demonstrations and feedbacks. 

We propose an interactive learning approach to overcome the challenge of non-optimal demonstra- 

tions by integrating human evaluative feedbacks with the IRL process, given sufficiently diverse demon- 

strations and the domain transition model. To this end, we develop a probabilistic model of human feed- 

backs and iteratively improve the agent policy using Bayes rule. We then integrate this information in an 

extended IRL algorithm to enhance the learned reward function. 

We examine the developed approach in one experimental and two simulated tasks; i.e., a grid world 

navigation, a highway car driving system and a navigation task by the e-puck robot. Obtained results 

show significant improved efficiency of the proposed approach in face of having different levels of non- 

optimality in demonstrations and the number of evaluative feedbacks. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Machine learning aims at training complex systems, such as au- 

tonomous cars and assistant robots, to perform sophisticated tasks 

in the real world. In addition, performing such real world appli- 

cations necessitates adaptation to user’s preferences as well as to 

changes in tasks and in the environment, with minimum user in- 

tervention. Researches in teaching by demonstrations and interac- 

tive learning target that aim and these adaptation capabilities; as 

a powerful replacement for manual coding and behavior tuning. 

Interactive learning techniques can be categorized into two ma- 

jor clusters; i.e., Learning from Feedbacks ( LfF ) and Learning from 

Demonstrations ( LfD ). In LfF , the trainer evaluates the learner be- 

havior and gives feedbacks in different formats (e.g., binary reward, 

numeric reward, etc.) to improve the learner policy (i.e., state- 

action mapping). In LfD , the agent tries to learn its policy by ob- 
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serving the trainer demonstrations. These techniques facilitate im- 

proving artificial systems’ behavior by non-technical users. 

Simplicity of providing evaluative feedbacks and absence of cor- 

respondence problem ( Nehaniv & Dautenhahn, 2007 ) between the 

trainer and the learner are the main advantages of LfF . Neverthe- 

less, LfF , in its basic form, suffers from the curse of dimensionality 

and the learner’s random behavior at early learning trials; when 

learning starts from scratch. It means that, LfF requires a large 

number of evaluative feedbacks and has a slow convergence rate 

to the desired policy. 

In LfD technique, in contrast, the correct action can be directly 

provided by the demonstrator; this reduces the learner exploration 

in those states it receives correct demonstrations. This property re- 

sults in faster learning provided that, demonstrations are correct 

and can be generalized to all possible situations. LfD techniques 

handle the transfer of new behaviors from trainers to learning 

agents, and unlike the record and replay methods, LfD techniques 

generalize from local state-actions to the whole space. Neverthe- 

less, the correspondence problem should be resolved prior to using 

LfD methods. 
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LfD techniques can be classified into two main categories ac- 

cording to the mechanism employed to imitate the demonstrator: 

“Direct imitation learning” and “Apprenticeship learning” meth- 

ods. “Direct imitation learning” comprises those methods that use 

supervised learning algorithms to directly derive the policy; see 

( Billard, Calinon, Dillmann, & Schaal, 2008; Hajimirsadeghi, Ah- 

madabadi, Araabi, & Moradi, 2012; M Ali beigi, 2015 ). On the other 

hand, “Apprenticeship learning” methods ( Abbeel & Ng, 2004 ) 

(also called intention learning or indirect imitation learning) are 

framed as Inverse Reinforcement Learning ( IRL ) problems ( Ng & 

Russell, 20 0 0 ) and aim to generalize the observed demonstrations 

by estimating the reward function that shapes the same behavior. 

Thereafter, the policy that maximizes the expected sum of this re- 

ward is derived by planning algorithms, such as dynamic program- 

ming ( DP ) ( Sutton & Barto, 1998 ). Estimation of the reward func- 

tion, to some extent, brings in robustness against changes in the 

learner configuration and the environment. 

Performance of IRL techniques mainly depends on the quality of 

demonstrations. Here, quality refers to sufficiency and optimality 

of demonstrations and is defined from the learner perspective. A 

demonstration is called optimal if it is generated by following the 

optimal policy. A set of demonstrations is sufficient if IRL output is 

sufficiently generalized to all states. 

In practice, demonstrations can be non-optimal due to miscel- 

laneous reasons: (a) difficulty in demonstrating some actions by 

the human trainer due to the complexity of the task. (b) Exper- 

tise requirement in the relevant field in order to guide the agent. 

(c) Correspondence problem due to some differences in physical 

embodiment and perception of the trainer and the learner. (d) In- 

feasibility to provide some demonstrations due to dangerous and 

harmful conditions for the human trainer. (e) Noisy demonstra- 

tions due to the environmental disturbances and (f) the learner’s 

imperfect perception. It means, the learner should deal with non- 

optimal demonstrations in the real world. 

There are different IRL methods that perform well in training 

the agent in parts of the state space where optimal, or close to 

optimal demonstrations are given. However, assuming to have per- 

fect demonstrations is not realistic in practice; therefore, additional 

information is needed to compensate for non-optimal demonstra- 

tions. Using human feedbacks is our choice to overcome the chal- 

lenges of non-optimality. By doing so, we benefit from comple- 

mentary properties of LfF and LfD methods in realistic situations. 

In this work, we assume that the agent learns from non-optimal 

demonstrations through IRL and improves its performance further 

by receiving human evaluative feedbacks; i.e., right/wrong instruc- 

tions. The question here is how to integrate human feedbacks with 

IRL in order to reduce the sensitivity to inaccurate demonstrations. 

The answer to this question is the main contribution of this paper. 

The rest of the paper is structured as follows: Section 2 deals 

with the review of some related works. Section 3 gives the nec- 

essary definitions and assumptions associated with our work. 

Section 4 gives details of our proposed approach. Section 5 pro- 

vides the evaluation metrics for testing the performance of the 

proposed method and shows the experimental results in some 

benchmarks. And finally the paper is concluded in Section 6 . 

2. Related works 

2.1. Learning from demonstrations (IRL approaches) 

All of the IRL approaches have the same principle of estimat- 

ing a reward function that motivates the demonstrated behav- 

ior, but differ in their methodology to do so. Some works in the 

IRL focus on learning the reward function under which the ex- 

pected feature count of demonstrations and the learned policy are 

matched ( Abbeel & Ng, 2004; Ratliff, Bagnell, & Zinkevich, 2006; 

Syed, Bowling, & Schapire, 2008 ). Some others introduce a proba- 

bility model over demonstrations and seek to maximize the prob- 

ability of the reward under this model ( Babes, Marivate, Subrama- 

nian, & Littman, 2011; Boularias, Kober & Peters, 2011; Ramachan- 

dran & Amir, 2007; Ziebart, Maas, Bagnell, & Dey, 2008 ). In ad- 

dition, there exists other approaches that mainly focus on solving 

the challenges of IRL algorithms, like the large computational com- 

plexity ( Sharma, Kitani, & Groeger, 2017 ), scaling to a large envi- 

ronment space ( Finn, Levine, & Abbeel, 2016 ), solving the IRL with- 

out predefining the space’s features ( Wulfmeier, Ondruska, & Pos- 

ner, 2015 ), etc. However, almost all of these foresaid approaches 

use the traditional assumption of the IRL that demonstrations are 

optimal or near to the optimal; i.e., they do not take into account 

the presence of non-optimality in demonstrations. Since usually 

providing optimal demonstrations is not possible in practice, in 

our work, we mainly focus on overcoming the non-optimality chal- 

lenge in the demonstrations so as to enhance learning. 

On the other hand, few IRL works have incorporated the 

assumption of non-optimality in their learning process. In 

( Silver, Bagnell, & Stentz, 2010 ), the problem of non-optimality is 

handled by relaxing the constraints of the object function with 

the assumption that the trainer demonstrations define a corridor 

in which the optimal path exists. Using this approach, the non- 

optimality in demonstrations can be overcome provided that its 

level is at a small scale. ( Zheng, Liu, & Ni, 2014 ) deals with demon- 

strations that are adversely affected by a sparse noise and consid- 

ers non-optimality in only some demonstrations. This work pro- 

poses a model to identify and differentiate between noisy and 

reliable demonstrations. Unlike these approaches, in our method, 

we assume that the non-optimality exists in each demonstration 

and it is impossible to differentiate between optimal and non- 

optimal ones. Also, we consider its level to be more than noise. 

In ( Xia & El Kamel, 2016 ), non-optimal demonstrations are pre- 

treated and improved by means of applying maximum a posteriori, 

and are later used in the IRL algorithm. However, in this approach, 

for non-optimalities more than noise level, pretreating demonstra- 

tions is not effective. In ( Coates, Abbeel, & Ng, 2008 ), it is sug- 

gested that a large number of non-optimal demonstrations could 

implicitly encode the optimal behavior and accordingly a genera- 

tive model is used to derive optimal demonstrations from a given 

set. Here, it is not evident that how much the provided demon- 

strations can be distant from the optimal ones. Almost all of these 

works, in addition to some Bayesian IRL approaches, assume that 

the level of non-optimality is small, a large number of demonstra- 

tions are available, and/or non-optimality exists in some demon- 

strations. These algorithms can only withstand a margin of non- 

optimality and they just deal with noisy demonstrations. 

In this work, our assumption of non-optimality is extended to 

include more than noisy demonstrations, in the sense that other 

non-optimality factors (as previously mentioned in introduction) 

are also considered in the learning process as well. In addition, the 

non-optimality can exist in each demonstration. Accordingly, this 

assumption increases the level of non-optimality which can’t be 

improved with additional or a large number of demonstrations and 

can’t be overcome unless another source of information is added to 

the learning process. Therefore, our approach attempts to extend 

the IRL by benefiting from another source of information based on 

human feedbacks in order to improve the learning in face of non- 

optimality in demonstrations. 

2.2. Learning from human feedbacks 

Regarding the use of human feedbacks in learning a policy, here 

we review some of the works that treat human feedbacks as either 

numerical rewards (values) or evaluative feedbacks (right/wrong). 

From the works that deal with numerical rewards as their only 
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