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a b s t r a c t 

The explosion in the rate, quality and diversity of image acquisition instruments has propelled the de- 

velopment of expert systems to organize and query image collections more efficiently. Recommendation 

systems that handle scientific images are rare, particularly if records lack metadata. This paper intro- 

duces new strategies to enable fast searches and image ranking from large pictorial datasets with or 

without labels. The main contribution is the development of pyCBIR , a deep neural network software to 

search scientific images by content. This tool exploits convolutional layers with locality sensitivity hashing 

for querying images across domains through a user-friendly interface. Our results report image searches 

over databases ranging from thousands to millions of samples. We test pyCBIR search capabilities using 

three convNets against four scientific datasets, including samples from cell microscopy, microtomography, 

atomic diffraction patterns, and materials photographs to demonstrate 95% accurate recommendations in 

most cases. Furthermore, all scientific data collections are released. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the increased availability of large data repositories, a sub- 

stantial amount of time is spent searching for pictures, which is 

seldom an efficient procedure. Recent reports ( Evans, 2016; GE Dig- 

ital, 2016 ) point out that the growth in data size, rates and variety 

is significant; they also suggest that scientific data will grow twice 

as quickly as any other sector, yet less than 3% of that data will 

be tagged in a meaningful way. Several imaging facilities will soon 

be generating 1 to 50 petabytes of data per year, which poses sev- 

eral challenges: (a) inadequate or insufficient meta-data describing 

experimental records; (b) the impracticality of manual curation of 

massive datasets; and (c) the lack of tools adapted to the new data 

acquisition modes. 
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Photo organizers that rely on curated data have improved to 

include operations such as sorting and categorization by dates 

or media types, metadata and other user annotations. However, 

manual insertion of metadata is seldom achievable at scale, and 

even impossible in some scenarios, such as with high-throughput 

imaging instruments. There is a critical need to create automated 

and accurate methods to organize, query and retrieve unlabeled 

images, since “everyone searches all the time” ( Eckstein, 2011 ). 

Building upon recent works on deep learning ( Araque, Corcuera- 

Platas, Sánchez-Rada, & Iglesias, 2017; Gonçalves, Guilherme, & 

Pedronette, 2018; Goodfellow, Bengio, & Courville, 2016 ) and the 

ability to create annotations for unlabeled datasets from cu- 

rated ones ( Ushizima et al., 2016 ), new expert systems promise 

to change the human experience from hardly relevant retrievals 

to broadly useful (over 85% accuracy) results. As an example, 

Google Photos has provided automated and custom-labeling fea- 

tures since 2015, so that users can quickly organize large collec- 

tions ( JR Raphael, 2015 ), with high retrieval accuracies for face de- 

tection. One of the main challenges in image recognition is to 

perform tasks that are easy for humans to do intuitively, but 

hard to describe formally ( Goodfellow et al., 2016 ). For exam- 
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ple, domain scientists ( Donatelli et al., 2015 ), who are visually 

trained to identify complex patterns from their experimental 

data, but many times are unable to describe mathematically the 

primitives that construct the motif. 

By using methods to identify patterns from pictures, rec- 

ommendation systems, also known as reverse image search tools, 

represent an excellent opportunity for data reduction, in which 

the imaging acquisition, data collection and storage strategies are 

integrated and tailored toward a desired pattern. Such systems 

could support scientists in adjusting experimental parameters fast 

enough for optimal data collection, combating a major problem 

at imaging facilities where overwhelming amounts of irrelevant 

data are collected daily. 

The main contributions of this work are as follows: (a) De- 

velopment of a new recommendation system for visual image 

search with an inferential engine that learns compact signa- 

tures for recovering images within massive datasets; it uses ap- 

proximate ranking, and includes 10 schemes to measure dis- 

tance based on different sets of features from labeled and/or 

unlabeled images; (b) Deployment of pyCBIR as an interac- 

tive system to enable a generic user to search for image col- 

lections from diverse domains through an intuitive graphical 

user interface in Qt ©as illustrated in Fig. 6 ; (c) Evaluation of 

three Convolutional Neural Networks (CNN) implementations 

available within pyCBIR , describing scientific problems that 

rely upon deep and complex networks, but also shallow archi- 

tectures. Because pyCBIR allows generalization of processing 

pipelines, it is quickly extensible to different training datasets; 

here we test data collections from four science domains, and 

report on accuracy and time consumption given different archi- 

tectural choices; (d) Establishment of reproducible work, con- 

taining both codes for benchmarks and tests using image repos- 

itories publicly available, and software based on open-source 

tools. 2 

First, we discuss previous work on CBIR in the context of the 

proposed expert system pyCBIR in Section 2 , including capabil- 

ities and benefits of pyCBIR to a generic user. Section 3 ex- 

plains the four data collections of images across domains. 

Section 4 presents detailed information on computational meth- 

ods tested in Section 5 , which focuses on results of applying 

different learning strategies to the different datasets. Finally, 

Section 6 evaluates the impact of pyCBIR , including perspec- 

tives on future requirements. 

2. Related work 

The term content-based image retrieval (CBIR) was introduced 

in 1992 by Kato ( Hirata & Kato, 1992; Kato, 1992 ), and it has been 

associated with systems that provide image matching and retrieval 

for queries performed by visual example. A quarter of century later, 

most image retrieval systems available for scientific image search 

still rely on keyword-based image retrieval ( van den Broek, van 

Rikxoort, & Schouten, 2005 ), although most of the image collec- 

tions generated by humans lack proper annotations ( Bethel, Green- 

wald, & Nowell, 2015 ). Effort s to optimize image search employ- 

ing CBIR systems ( Khatami et al., 2018; Tzelepi & Tefas, 2018; Yu, 

Yang, Yao, Sun, & Xu, 2017 ) exploit computer vision and machine 

learning algorithms to represent images in terms of more compact 

primitives. Given an image as an input query, instead of keywords 

or metadata, such an approach allows matching samples by simi- 

larity. 

Since 2003, the Bag-of-Words (BoW) model has been pre- 

dominantly viewed as the state-of-the-art in CBIR, augmented 

2 Source codes/data to be published upon paper acceptance at camera.lbl.gov 

by 13 years of Scale Invariant Feature Transform (SIFT) meth- 

ods ( Zheng, Yang, & Tian, 2017 ). In addition, CBIRs combining 

textural descriptors, such as Gabor and Fourier ( Hannan, Are- 

bey, Begum, Basri, & Mamun, 2016; Shrivastava & Tyagi, 2015 ), 

GLCM ( Hannan et al., 2016 ), continue to be broadly used to or- 

ganize natural images, and made use of similarity search based 

on the Euclidean distance . Tsochatzidis et al. ( Tsochatzidis et al., 

2017 ) extend previous ideas and include exploration of His- 

togram of Oriented Gradients (HOG) descriptors combined with 

the Earth Mover’s Distance to recover mammograms based on 

similarity. Moreover, image retrieval methods have advanced in 

two main directions: SIFT-based and CNN-based, with promis- 

ing improved accuracy when combining CNN and SIFT fea- 

tures ( Zheng et al., 2017 ). To the best of our knowledge, there are 

no software tools that allow combining both strategies for CBIR 

tasks. Several free engines for CBIR are thriving at natural and 

biomedical image organization, and e-commerce tasks ( Shamoi, In- 

oue, & Kawanaka, 2015; Yu et al., 2016 ), but underlying codes for 

end-to-end workflow remain closed, and are seldom generalizable 

to other scientific image collections. 

2.1. CNN And visual recognition 

These are significant strides toward automating image catalogs, 

and motivates our effort s to construct convolutional neural net- 

works (CNN) using Google TensorFlow to organize scientific data. 

TensorFlow ( Abadi et al., 2015 ) is an open-source software library 

for Machine Intelligence that presents advantages regarding flex- 

ibility, portability, performance, and compatibility to GPU. In or- 

der to deliver high-performance C++ code, TensorFlow uses the 

Eigen linear algebra library in addition to CUDA numerical libraries, 

such as cuDNN to accelerate core computations and scale to large 

datasets. 

A typical CNN pipeline is shown in Fig. 1 , consisting of three 

main “neural” layers: convolutional layers, pooling layers, and fully 

connected layers. This algorithm requires two stages for training 

the network: (a) a forward stage, which represents the input im- 

age in each layer and outputs a prediction used to compute the 

loss cost based on the curated data (labeled samples), and (b) a 

backward stage, which computes the gradients of layer parameters 

to drive the cost function to very low values ( Goodfellow et al., 

2016; Guo et al., 2016 ). 

By exploring CNN algorithms that automatically extract fea- 

tures at multiple levels of abstraction from large datasets, CBIR 

systems can benefit from complex non-linear functions that 

map unprocessed input data to the results, bypassing human- 

designed characterization reliant on domain knowledge . Wan 

et al. ( Wan et al., 2014 ) investigated different deep learning frame- 

works for CBIR when applied to natural images, such as the 

ILSVRC2012 (ImageNet Large Scale Visual Recognition Challenge) 

dataset. That paper reported mean average precision of 0.4711 us- 

ing a massive image collection with 10,0 0 0,0 0 0 hand-labeled im- 

ages depicting 10,0 0 0+ object categories as training. 

2.2. Expert systems for material recognition 

Apart from natural scenes, recent works on recognizing mate- 

rial categories from images ( Bell, Upchurch, Snavely, & Bala, 2014; 

Liu, Sharan, Adelson, & Rosenholtz, 2010; Sharan, Rosenholtz, & 

Adelson, 2014; Zhang, Ozay, Liu, & Okatani, 2015 ) include experi- 

ments using the Flickr Material Dataset (FMD) and/or the Materi- 

als in Context Database (MINC). Sharan et al. ( Sharan et al., 2014 ) 

explored low and mid-level features, such as color, SIFT, HOG, com- 

bined with an augmented Latent Dirichlet Allocation model under 

a Bayesian generative perspective, achieving 44.6% accurate recog- 

nition rate on FMD. Using a CNN-based feature extraction mecha- 
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