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a b s t r a c t 

This research builds on the hypothesis that the use of different fitness measures on the different gener- 

ations of genetic programming (GP) is more effective than the convention of applying the same fitness 

measure individually throughout GP. Whereas the previous study used a genetic algorithm (GA) to in- 

duce the sequence in which fitness measures should be applied over the GP generations, this research 

uses a meta- (or high-level) GP to evolve a combination of the fitness measures for the low-level GP. The 

study finds that the meta-GP is the preferred approach to generating dynamic fitness measures. GP sys- 

tems applying the generated dynamic fitness measures consistently outperform the previous approach, as 

well as standard GP on benchmark and real world problems. Furthermore, the generated dynamic fitness 

measures are shown to be reusable, whereby they can be used to solve unseen problems to optimality. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Genetic programming (GP) literature proposes a myriad of fit- 

ness measures ( Koza, 1992b; Krawiec & O’Reilly, 2014; Krawiec & 

Swan, 2013; Lehman & Stanley, 2010; McKay, 20 0 0; 20 01 ), which 

aim to overcome different shortcomings, e.g. escaping local optima, 

reducing bloat, thereby improving on the performance of the algo- 

rithm. The convention in GP is to apply a given fitness measure 

individually throughout the course of the algorithm. However, the 

previous study ( Ragalo & Pillay, 2017 ) showed that Dynamic Fitness 

Measure GP (DFMGP), which applies different fitness measures on 

the different GP generations, is more effective than following this 

convention. This premise is justified by the shift between explo- 

ration and exploitation in the course of the GP algorithm: explo- 

ration, a de facto global search, is used to promote coverage of the 

search space ( Crepinšek, Liu, & Mernik, 2013; Eiben & Schippers, 

1998 ); in turn, exploitation, a de facto local search, is used to refine 

promising solutions when good points in the search space have 

been discovered ( Crepinšek et al., 2013; Eiben & Schippers, 1998 ). 

GP search is a constant balance between exploration and exploita- 

tion, with the former dominating the preliminary generations, and 

the latter, later generations ( Koza, 1992b ). DFMGP is shown to be 

effective when the fitness measure used at each generation sup- 

ports the dominant search (i.e. exploration vs. exploitation) in the 

on-going phase of GP ( Ragalo & Pillay, 2017 ). 
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In the previous study ( Ragalo & Pillay, 2017 ), a genetic algo- 

rithm (GA) was used to induce the sequence in which fitness mea- 

sures should be applied over the course of DFMGP. The current re- 

search builds on the concept of DFMGP. Rather than a GA, a meta- 

GP is used to generate combinations of the fitness measures. Here, 

the meta-GP is used to create a new function for the fitness mea- 

sure, whereby the new function is a logical and arithmetic com- 

bination of existing fitness measures. Importantly, the meta-GP’s 

variable length represenation 

1 allows the evolving dynamic fitness 

measure to develop in size and structure, thus opening up further 

avenues to improve on the performance of DFMGP. 

We refer to the combinations of fitness measures evolved by 

the meta-GP as composite fitness measures (CFMs). DFMGP ap- 

plying the evolved CFMs is applied to 6 benchmark GP problem 

classes 2 , namely, sextic regression ( Koza, 1994 ), Keijzer-6 regres- 

sion ( Keijzer, 2003; White et al., 2013 ), even- n parity ( Koza, 1994 ), 

n -bit multiplier ( Walker & Miller, 2010 ), tartarus ( Cuccu & Gomez, 

2011; Dick, 2013; Trenaman, 1999 ) and deceptive tartarus ( Cuccu 

& Gomez, 2011 ), and its performance is compared to DFMGP ap- 

plying fitness measure sequences evolved by the GA approach 

1 The variable-length representation is a feature of all GP algorithms; the repre- 

sentation gives GP an advantage over GA, because it permits the solution structure 

to evolve in problems where it is difficult to a priori specify the size and structure 

of the optimal solution ( Koza, 1992b ). 
2 The literature ( Haraldsson & Woodward, 2014 ) defines a problem class as a 

probability distribution over the instances of a given problem; this is the interpre- 

tation of the term used in the manuscript. The term problem domain is also used in 

the manuscript: a problem domain is a grouping of similar problems e.g. symbolic 

regression problems, Boolean function synthesis problems, etc. ( Koza, 1992b ). 
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( Ragalo & Pillay, 2017 ), as well as standard GP. DFMGP is also 

applied to 4 complex, real-world problems, namely, the abalone 

( Newman, Hettich, Blake, & Merz, 2015 ) and Dow Chemical parser 

( White et al., 2013 ) datasets from the symbolic regression domain, 

and the flame detection circuit ( Kuphaldt, 2006 ) and binary-coded- 

decimal-to-seven-segment decoder ( Mano, Kime, & Martin, 2008 ) 

problems from the Boolean function synthesis domain. Here, the 

CFMs evolved by training the meta-GP on the problem classes are 

tested on real-world problems from the same problem domain. The 

idea is to train the CFMs on simpler and less complex problems 

that will not take as much time to train on, and subsequently use 

the CFMs on the real-world problems. The study finds that it is 

better to use GP at the meta-level, rather than a GA: DFMGP apply- 

ing the GP-evolved CFMs consistently outperforms DFMGP apply- 

ing the GA-evolved sequences. The study also finds that the CFMs 

can be used to solve unseen problems to optimality. Therefore the 

current study makes the following contributions: 

• The study compares the use of GP versus the use of a GA at the 

meta-level to evolve dynamic fitness measures for GP and finds 

that the former approach yields more effective dynamic fitness 

measures. 
• The study shows that the GP-evolved CFMs are reusable, i.e. 

a CFM can be evolved for a problem class and yield good re- 

sults on unseen problem instances of the class. The CFMs also 

produce better results than both the previous approach and 

standard GP on unseen complex, real-world problems from the 

same problem domain. 

The manuscript is organized as follows. Section 2 discusses the 

GP algorithm. Section 3 details the fitness measures used in the 

study. Sections 4 and 5 describe DFMGP and the implemented 

meta-GP in detail. Section 6 outlines the methodology for the 

manuscript’s experiment. Section 7 presents the results of the 

experiment, and discusses the significance of the results. Lastly, 

Section 8 concludes the manuscript and discusses possible direc- 

tions for future work. 

2. Genetic programming 

Genetic programming (GP) is an evolutionary algorithm (EA) in- 

troduced by Koza (1992b) that explores a program space rather 

than a solution space as in the case of genetic algorithms. Hence, 

each element of the population is a program represented by a 

parse tree. The generational GP algorithm begins by creating an 

initial population that is iteratively refined via the processes of 

evaluation, selection and regeneration. 

Evaluating the population involves calculating a fitness measure 

for each parse tree using a fitness function. Fitness functions calcu- 

late the objective fitness of a program which is a measure of how 

good the solution produced by the program is, and is hence prob- 

lem specific. Tournament selection is the selection method usually 

employed by the GP algorithm to select parents ( Koza, 1992b ). This 

method uses the fitness measure of the elements of the popula- 

tion to make a choice. Genetic operators are applied to the chosen 

parents to produce offspring of the next generation. The genetic 

operators that are commonly used are reproduction, mutation and 

crossover ( Koza, 1992b ). 

At the inception of GP, objective fitness was used as a fitness 

measure. As the field developed various fitness measures emerged 

in an attempt to overcome the shortcomings of GP such as prema- 

ture convergence and the growth of redundant code. The following 

section provides a description of different fitness measures derived 

for GP. These have been chosen to include those fitness measures 

that have proven to be effective and have made an impact in the 

field, and more recent measures such as behavioural programming. 

3. Fitness measures 

This section describes the fitness measures used in the 

study. The fitness measures used are: (1) Objective fitness (OF) 

( Koza, 1992b ), (2) Behavioural programming (BP) ( Krawiec & 

O’Reilly, 2014; Krawiec & Swan, 2013 ), (3) Fitness sharing (FS) 

( Bersano-Begey, 1997; McKay, 20 0 0 ), (4) Dynamic subset selection 

(DSS) ( Gathercole & Ross, 1994 ), (5) Host-parasite coevolution (HP) 

( Hillis, 1990; Pagie & Hogeweg, 1997; Siegel, 1994; Williams & 

Mitchell, 2005 ), and (6) Novelty search (NS) ( Lehman & Stanley, 

2010; Martinez, Naredo, Trujillo, & Galván-López, 2013; Naredo & 

Trujillo, 2013; Naredo, Trujillo, & Martínez, 2013 ). The goal in pro- 

viding a diverse subset of fitness measures is for the meta-GP to 

be able to produce optimal CFMs for varied problem classes. 

A detailed description of the fitness measures ensues. For the 

sake of uniformity, the fitness measures are formulated as maxi- 

mization functions. In formulating the fitness measures, the termi- 

nology ‘taken from’ is used for equations copied directly from the 

referenced text; however, the notation in these equations may dif- 

fer from the referenced text, in conformity with the uniform nota- 

tion applied in the manuscript. The terminology ‘adapted from’ is 

used for equations that borrow from the referenced text; in some 

instances, the equations in the referenced text are specific to the 

problems evaluated in the text; these equations are restated to ex- 

press a general formulation for the given fitness measure; in other 

instances, the equations are restated to present the fitness mea- 

sures as maximization functions. Lastly, where neither terminology 

is used, the equation is a formulation derived by the authors, based 

on the description of the fitness measure provided in the literature. 

3.1. Objective fitness 

Objective fitness (OF) is the canonical fitness measure applied 

at the origination of GP in Koza (1992b) ; most GP practitioners 

have the habit of relying on OF measures. In objective fitness GP 

(OF-GP), solutions that are closer to achieving the objective are 

considered to be better than solutions that are further away. 

Eq. (1) is used to calculate a solution’s OF score. Eq. (1) is 

adapted from Koza (1992b) . 

F 1 (i, m ) = 

| m | ∑ 

n =1 

δ(S(i, x n ) , y n ) (1) 

whereby: 

(1) F 1 ( i, m ) is i ’s OF score. 

(2) i is the candidate solution. 

(3) m is the fitness case training set defined for the given problem. 

| m | is the size of m . 

(4) x n is the n th fitness case in m . 

(5) S ( i, x n ) is the output value returned by i for x n . 

(6) y n is the target value for x n . 

(7) In quantitative problems: δ(S(i, x n ) , y n ) = −| S(i, x n ) − y n | i.e. 

the negative absolute difference between S ( i, x n ) and y n (the 

negative sign induces maximization). 

In qualitative problems: δ(S(i, x n ) , y n ) = 

{
1 , if S(i, x n ) = y n . 

0 , if S(i, x n ) � = y n . 

Fig. 1 shows an example of the OF calculation for a candidate 

solution, i , in a simple Boolean (qualitative) problem with two in- 

puts, A1 and A2. The same problem and candidate solution will be 

used for all example fitness calculations shown in this section. 

3.2. Behavioural programming 

Behavioural programming (BP) is motivated by the observation 

that OF abstracts the useful information contained in the internal 
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