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a b s t r a c t 

Dimensionality Reduction (DR) is an important preprocessing step in supervised learning. It involves re- 

ducing/mapping of high-dimensional data into a low-dimensional space by preserving important infor- 

mation. The classical DR paradigm can be divided into Feature Selection (FS) and Feature Extraction (FE) 

approaches. So far, these approaches have been studied extensively but independently and the reduced 

set contains either original or transformed features. And, it is well known that FS and FE approaches 

based on information theoretic measures are considered to be the most effective approaches as these 

measures are able to compare the nonlinear relationships between random variables. Herein, we present 

a novel scheme to generate reduced compound (both original and transformed) feature set based on such 

measures in supervised learning. This method considers information theoretic measure Mutual Informa- 

tion (MI) and MI based interactions between features and it is able to produce maximum informative 

and less redundant compound features. The performance of the proposed algorithm is compared with 

state-of-the-art DR methods using multiple classifiers on UCI machine learning repository and face and 

object recognition and bio-microarray data sets. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

With the recent explosion of the size of the available data sets, 

high dimensional data is becoming more prominent in both su- 

pervised and unsupervised learning paradigms. The proliferation of 

high dimensional data causes serious problems to many Machine 

Learning algorithms with respect to scalability and learning perfor- 

mance ( Van Der Maaten, Postma, & Van den Herik, 2009 ). It is very 

important to reduce the dimensionality of the data to decrease the 

training time and enhance the performance of the learning algo- 

rithms ( Guyon & Elisseeff, 2003; Liu & Yu, 2005 ). Dimensionality 

Reduction (DR) methods are widely used in many application areas 

relevant to expert and intelligent systems, such as machine learn- 

ing, image processing, anomaly detection, bioinformatics and text 

mining. These DR methods can be divided into two major cate- 

gories: feature selection and feature extraction. Feature selection 

methods reduce the dimensionality by selecting a subset of impor- 

tant features. Feature extraction methods transform existing fea- 

tures into a new feature space of lower dimensionality. Unlike fea- 

ture extraction, feature selection does not alter the original data 
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and feature extraction may be preferred when only discrimination 

is needed ( Jain, Duin, & Mao, 20 0 0 ). 

Feature selection has been reviewed in a number of recent re- 

view articles ( Guyon & Elisseeff, 2003; Vergara & Estévez, 2014 ). 

Usually, feature selection methods are divided into two groups 

based on the evaluation process, classifier dependent (‘wrapper’ 

and ‘embedded’) or classifier independent (‘filter’) methods. Wrap- 

per methods select a feature subset using the prediction accu- 

racy of a classifier and perform well as the quality of the selected 

subset is optimized for the classification algorithm. But, these 

methods may suffer from over-fitting to the learning algorithm 

and very expensive in terms of computational complexity ( Bolón- 

Canedo, Sánchez-Maroño, & Alonso-Betanzos, 2013 ). Embedded 

method is combined with the learning stage and less expensive in 

terms of computational complexity and less prone to over-fitting. 

Filter methods rank features according to their relevance to the 

class label. The relevance score is calculated using distance, infor- 

mation, correlation and consistency measures ( Liu, Lin, Lin, Wu, & 

Zhang, 2017 ). The main advantages of the filter methods are their 

computational efficiency and independence from the classifier. The 

popular filter feature selection methods usually employ feature se- 

lection criteria based on the first and second-order statistics com- 

puted from the empirical distribution ( Liu, Motoda, & Dash, 1998; 

Narendra & Fukunaga, 1977 ). The major drawback of these feature 
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selection criteria are sensitive to data noise and data transforma- 

tion ( Dash & Liu, 1997 ). 

Feature extraction creates new variables by combining the orig- 

inal features to reduce the dimensionality of the data. Feature ex- 

traction algorithms can be categorised in to linear and non-linear 

methods. Non-linear techniques are mostly kernel based, for ex- 

ample, kernel PCA (KPCA), kernel Discriminant Analysis (KDA), ker- 

nel MMC (KMMC) ( Lee & Verleysen, 2007 ). Other non-linear tech- 

niques which preserve local properties of the data are, Locally Lin- 

ear Embedding (LLE), Laplacian Eigenmaps ( Tenenbaum, De Silva, & 

Langford, 20 0 0 ), Hessian LLE ( Donoho & Grimes, 2003 ), local tan- 

gent space analysis ( Zhang & Zha, 2004 ). Linear feature extraction 

methods assume that the data lies on a lower-dimensional linear 

subspace. Popular linear dimensional reduction algorithm is Prin- 

cipal Component Analysis (PCA). However, PCA does not use the 

class label information which results in loss of some useful dis- 

criminating information for classification. A popular linear dimen- 

sionality reduction algorithm for supervised FE is Linear Dimen- 

sionality Analysis (LDA). LDA has been proven to be more effective 

than PCA as it uses discriminatory information. Some of the other 

linear FE methods are, Maximum Margin Criterion (MMC), An- 

gle Linear Discriminant Embedding (ALDE), Marginal Fisher Anal- 

ysis (MFA) ( Fukunaga, 2013 ), Sparse Linear Discriminant Analysis 

(SLDA) Clemmensen, Hastie, Witten, and Ersbøll (2011) . These well- 

known linear FE methods rely on first- and second-order statis- 

tics (remote means and low variances), which provide some clues 

about the linear separability between classes. But, FE methods, in 

spite of being linear, must retain the discriminative information 

even for the non-linear class boundaries. 

From the above, one can conclude that a DR (FS or FE) method 

must consider high-order moments to model the discrimination 

with in the data. For this purpose, Shannon’s information theory 

provides a powerful tool Mutual Information (MI), which can cap- 

ture non-linear dependency between variables ( Battiti, 1994 ). It 

can be considered as higher order statistics and is more robust to 

noise and data transformation ( Principe, Xu, & Fisher, 20 0 0 ). Re- 

cently, it has been widely used both in FS and FE ( Battiti, 1994; 

Bennasar, Hicks, & Setchi, 2015; Torkkola & Campbell, 20 0 0 ). 

All the above mentioned methods provide reduced set either 

with original or transformed features. Also, the transformed fea- 

tures are the combinations of all of the original features. Recently, 

a new strategy for DR with the aim of providing reduced set 

with both original and combinations of features (compound fea- 

tures), without losing orthogonality among the selected combi- 

nations of features (semi-features) and original features, is pro- 

posed ( Sreevani & Murthy, 2017 ). This method can keep balance 

between discrimination and interpretation of the resulting fea- 

tures as it provides both original and combinations of features. 

The algorithm, named as MPeMR, is based on recursively combin- 

ing (PCA/ LDA) original/derived feature pairs and removing redun- 

dant features by selecting the representative one. This algorithm 

is an iterative method and in each iteration, semi-features are ex- 

tracted considering only pairs of features i.e., each iteration gen- 

erates semi-features which are only a 2-linear combination of fea- 

tures derived from the previous iteration. Moreover, MPeMR gen- 

erates semi-features by considering only second-order statistics to 

model the discrimination present in the data. In this work, com- 

pound features are generated by considering information theoretic 

measure, higher order statistic MI and MI based feature interac- 

tions. Instead of considering pairs of features, here features are 

grouped so that the extraction of semi-features is performed on 

that group and semi-features are linear combinations of all the 

features present in the group. The proposed method extracts in- 

formative semi-features from the features which are 3-way inter- 

acting with the class label and eliminates both irrelevancy and re- 

dundancy among the generated compound features. Finally the al- 

gorithm provides maximum informative and less redundant com- 

pound features. 

The rest of the paper is organized as follows. In Section 2 , 

a summary of information theory concepts is provided and 

Section 3 explores the related work based on information the- 

ory. In Section 4 , we describe the proposed method which uses 

MI concepts for compound feature generation in classification. 

Section 5 includes a set of experiments to show the feasibility of 

our method. Finally conclusion has been made in Section 6 . 

2. Background theory 

As the interest of the article lies in providing compound fea- 

ture subsets based on information theoretic measures, firstly we 

present the definitions of semi-feature and compound feature 

set ( Sreevani & Murthy, 2017 ), then provide a brief introduction to 

information theoretic concepts. 

Let O = { f 1 , f 2 , . . . , f D } be the given set of features. 

Semi-feature A feature s is called a semi-feature if it is a com- 

bination of only a proper subset of original features i.e., s = a i 1 f i 1 + 

a i 2 f i 2 + · · · + a ik f ik , f i 1 , . . . , f ik ∈ O, a i j ∈ R and k < D . 

Compound Feature Set (CFS) A set R which contains both 

original ( f ) and semi-features ( s ) while maintaining orthogonality 

among them i.e., 

R = 

{ 

u | u ∈ { f i 1 , . . . , f ip , s j1 , . . . , s jq } , any two u 

′ s 

are orthogonal & p + q ≤ D 

} 

. 

Compound Feature Generation (CFG) Process of generating 

compound features without losing orthogonality among the se- 

lected original and combinations of features. 

Assume a random variable X representing continuous-valued 

random feature, and a discrete-valued random variable C repre- 

senting the class labels. The entropy of a random variable is a mea- 

sure of its uncertainty ( Cover & Thomas, 2012 ). The entropy of the 

class label C is denoted by H(C) and is defined as: 

H(C) = −
∑ 

c∈C 
p(c) log p(c) , 

where p(c) = probability {C = c} represents the probability of the 

discrete random variable C. 

The uncertainty about C given X is measured by the conditional 

entropy as, 

H(C| X ) = −
∫ 
x 

p(x ) 
(∑ 

c∈C 
p(c| x ) log p(c| x ) 

)
dx, 

where p ( c | x ) is the conditional probability for the variable C given 

X . The conditional entropy is the amount of uncertainty left in C
when a variable X is introduced, so it is less than or equal to the 

entropy of both variables. The conditional entropy is equal to the 

entropy if, and only if, the two variables are independent. 

Mutual Information (MI) is the amount of information that both 

variables share, and is defined as: 

I(X ; C) = H(C) − H(C| X ) , 

and after applying the identities p(c, x ) = p(c| x ) p(x ) and p(c) = ∫ 
p(c, x ) dx, MI can be expressed as, 

I(X ; C) = 

∑ 

c∈C 

∫ 
x 

p(x, c) log 
p(x, c) 

p(c) p(x ) 
dx. 

This is the difference of two entropies - the uncertainty before X is 

known ( H(C) ), and the uncertainty after X is known ( H(C| X ) ). This 

can also be interpreted as the amount of uncertainty in C which is 

removed by knowing X , which is the amount of information that 
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