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a b s t r a c t 

The Max-Sum diversity and the Max-Min diversity are two well-known optimization models to capture 

the notion of selecting a subset of diverse points from a given set. The resolution of their associated 

optimization problems provides solutions of different structures, in both cases with desirable charac- 

teristics. They have been extensively studied and we can find many metaheuristic methodologies, such 

as Greedy Randomized Adaptive Search Procedure, Tabu Search, Iterated Greedy, Variable Neighborhood 

Search, and Genetic algorithms applied to them to obtain high quality solutions. In this paper we solve 

the bi-objective problem in which both models are simultaneously optimized. No previous effort has been 

devoted to study the “combined problem” from a multi-objective perspective. In particular, we adapt the 

mono-objective methodologies applied to this problem to the resolution of the bi-objective problem, ob- 

taining approximations to its efficient front. An empirical comparison discloses the best alternative to 

tackle this N P -hard problem. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The problem of maximizing diversity refers to the selection of 

a subset of elements from a given set in such a way that the di- 

versity among the selected elements is maximized ( Glover, Ching- 

Chung, & Dhir, 1995 ). We can find different applications of max- 

imizing diversity in real-world situations. For instance, many uni- 

versities in the United States, when determining admission poli- 

cies, go beyond selecting through the academic grades, and also 

consider other factors in the search for a diverse set of stu- 

dents ( Ramirez, 1979 ). In market planning, it is often desir- 

able to maximize both, the number and the diversity of forces 

in a brand profile ( Keely, 1989 ). Other contexts in which max- 

imizing the diversity can be applied include plant cultivation 

( Porter, Rawal, Rachie, Wien, & Williams, 1975 ), social problems 

( Swierenga, 1977 ), immigration policies that promote ethnic di- 

versity ( McConnell, 1988 ), ecological preservation ( Unkel, 1985 ), 

design of products ( von Ghyezy, 1986 ), task-force management 

( Thomas, 1990 ), curriculum design ( Jackson, 1991 ), and manage- 

ment of genetic resources ( Glover, 1992 ). 

As other optimization problems, in spite of its simplicity, it is a 

challenge even for modern solving techniques. As a matter of fact, 

the first obstacle that we encounter when dealing with diversity 
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is its modeling. Note that when we talk about diversity, we are 

assuming the existence of a distance function in the space where 

elements belong. Distance functions, such as the well-known Eu- 

clidean distance, typically compute a value to measure the similar- 

ity or proximity of two elements. When we consider a subset of 

more than two elements, we have a distance value for each pair of 

elements in the subset, and we have to compute a single diversity 

value from all of them. In this way, we can compare two different 

subsets in our search for the best one. This is where the math- 

ematical model plays a key role capturing the notion of diversity 

by specifying how to compute a single diversity value from many 

pairwise distances. A few models, and many solving methods have 

been proposed in the last few years. 

The most studied model is probably the Maximum Diver- 

sity Problem (MDP) also known as the Max-Sum Diversity Model 

( Ghosh, 1996 ), in which the sum of the distances between the se- 

lected elements is maximized. Considering that n is the number 

of elements in the original set, and m the number of selected ele- 

ments (the subset cardinality), we can formulate it in mathemati- 

cal terms as: 

(MDP) Maximize z MS (x ) = 

∑ 

i< j 

d i j x i x j 

s.t. 
n ∑ 

i =1 

x i = m 

x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(1) 

This formulation is based on the binary variables x i indicating 

whether object i is selected or not. Note that although this math- 
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Table 1 

Diversity measures according to Sandoya et al. (2018) . 

Measure Mathematical function Description 

Sum 

∑ 

i< j,i, j∈ M 
d i j This measure may address diversification among selected elements to distance. 

Min min 
i< j,i, j∈ M 

d i j Focus on the minimum distance among the selected elements. 

Mean 

∑ 

i< j,i, j∈ M d i j 

| M| Related to the Sum measure, is an average equity measure. 

MinSum min 
i ∈ M 

∑ 

j∈ M, j � = i 
d i j This measure considers the minimum sum of distances, which corresponds to the aggregate dispersion among elements. 

Diff max 
i ∈ M 

∑ 

j∈ M, j � = i 
d i j − min 

i ∈ M 

∑ 

j∈ M, j � = i 
d i j This measure can be understood as the difference between the largest and smallest values of the dispersion sum. 

ematical model only contains one objective function and one con- 

straint, it is indeed quite complicated to solve, due to the com- 

bination of a non-linear objective function with a discrete solu- 

tion space (as a result of the binary variables). On the other hand, 

the combinatorial nature of its solutions makes its complete enu- 

meration impracticable, thus being a challenge for both exact and 

heuristic solving methods. 

The second model in terms of its popularity is probably the 

Max-Min Diversity Problem (MMDP) ( Erkut, 1990 ), in which the 

minimum distance between the selected elements is maximized. 

It can be formulated in a similar way as follows: 

(MMDP) Maximize z MM 

(x ) = min 

i< j 
d i j x i x j 

s.t. 
n ∑ 

i =1 

x i = m 

x i ∈ { 0 , 1 } i = 1 , . . . , n. 

(2) 

The Max-Sum and Max-Min literature includes extensive sur- 

veys ( A ̆gca, Eksioglu, & Ghosh, 20 0 0; Erkut & Neuman, 1989; Kuo, 

Glover, & Dhir, 1993 ), exact methods ( A ̆gca et al., 20 0 0; Ghosh, 

1996; Pisinger, 2006 ), and heuristics ( Ghosh, 1996; Hassin, Ru- 

binstein, & Tamir, 1997; Kincaid, 1992; Ravi, Rosenkrantz, & Tayi, 

1994; Resende, Martí, Gallego, & Duarte, 2010 ). Although we can 

find other mathematical models to map the notion of diversity 

into functions and constraints, they did not receive much atten- 

tion. Special mention deserves the work in Prokopyev, Kong, and 

Martinez-Torres (2009) in which four different models in the con- 

text of facility location and group selection are proposed. Table 1 

summarizes the diversity measures known for a subset M of ele- 

ments ( Sandoya, Martínez-Gavara, Aceves, Duarte, & Martí, 2018 ). 

Note that all of them have been proposed in the context of single- 

objective optimization. 

In this paper we study the diversity maximization from a multi- 

objective point of view. In particular, we consider the Max-Sum 

and the Max-Min measures as objectives to be simultaneously 

maximized. We have called this problem the Bi-Objective Diversity 

Problem (BODP). The aim of BODP is to provide the user with dif- 

ferent solutions (subsets of the given set) with different objective 

values. To tackle the BODP we have explored six different methods 

from three families of algorithms: the Non-dominated Sorting Ge- 

netic Algorithm-II, usually known as NSGA-II ( Deb, Pratap, Agarwal, 

& Meyarivan, 2002 ) and the second version of the Strength Pareto 

Evolutionary Algorithm, also known as SPEA2 ( Zitzler, Laumanns, & 

Lothar, 2001 ), from the population-based algorithms; Greedy Ran- 

domized Adaptive Search Procedure ( Feo & Resende, 1989 ) and It- 

erated Greedy ( Ruiz & Stützle, 2007 ) from the construction-based 

algorithms; and Tabu Search ( Glover & Laguna, 1997 ) and Vari- 

able Neighborhood Search ( Hansen & Mladenovic, 2001 ) from the 

trajectory-based algorithms. We have adapted these six algorithms 

to the BODP proposing some new elements, such us the codifi- 

cation of solutions, new genetic operators, constructive methods 

and local search strategies. Given that those algorithms require 

several parameters to be adjusted, we have used iRace ( López- 

Ibánez, Dubois-Lacoste, Cáceres, Stutzle, & Birattari, 2016 ) to auto- 

matically tune their configuration taking into account the hyper- 

volume quality indicator. Finally, we have compared the six ap- 

proaches in a well-known set of instances using three quality in- 

dicators for multi-objective optimization: hypervolume, set cover- 

age, and epsilon indicator. The results show that the Tabu Search 

method obtains better results and spends shorter execution times. 

The rest of the paper is organized as follows. In Section 2 , we 

motivate the multi-objective nature of the problem. In Section 3 , 

we describe the algorithmic proposals, while in Section 4 , we de- 

tail the experimental experience. Finally, in Section 5 , we draw the 

conclusions and the future work. 

2. Problem motivation 

Given that the main purpose of this paper is to maximize di- 

versity, one may ask, why is it important? We can find numer- 

ous applications in the scientific literature to answer it. From a 

human resources perspective, promoting diversity and equity is 

a goal in many companies and organizations. This includes IN- 

FORMS, the American institute for operations research and man- 

agement science. This institute even promotes an award, the WSC 

Diversity Award, to improve outreach and diversity among young 

researchers. It is nowadays a well-established principle in many 

companies that increasing human diversity in not only ethical but 

also beneficial for the company efficiency. This has been very-well 

summarized in the book by Scott Page ( Page, 2007 ), where he 

states that “Diverse perspectives and tools enable collections of 

people to find more and better solutions and contribute to over- 

all productivity”. 

If we turn our attention to logistics and consider for example 

the area of vehicle routing, we can find specific models to cre- 

ate diverse routes. Martí, Velarde, and Duarte (2009) considers a 

multi-objective routing problem in which a set of paths from an 

origin to a destination must be generated. Finding different paths 

in a graph is a classical optimization problem, and in the context 

of hazardous materials transportation, we want to obtain spatially 

dissimilar paths that minimize the risk (distributing the risk over 

all regional zones to be crossed uniformly). The Path Dissimilarity 

Problem involves obtaining a set of p paths with minimum length 

and maximum diversity. This and related models have been exten- 

sively studied in Operations Research where maximizing diversity 

is an important point. 

In this paper we focus on the two most studied models, Max- 

Sum and Max-Min, and propose a bi-objective model for an im- 

proved approach to identify diverse subsets in a given set. We tar- 

get these two objectives for several reasons. The first one is that 

they are pure diversity models, while the others mentioned above 

are equity models according to Sandoya et al. (2018) . These authors 

reviewed all the existing models and classified them according to 

their scope. A second reason to consider these two objectives is 

because of their relatively low correlation ( Resende et al., 2010 ). 
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