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a b s t r a c t 

Accurate estimation of the biomass of roadside grasses plays a significant role in applications such as 

fire-prone region identification. Current solutions heavily depend on field surveys, remote sensing mea- 

surements and image processing using reference markers, which often demand big investments of time, 

effort and cost. This paper proposes Density Weighted Connectivity of Grass Pixels (DWCGP) to automati- 

cally estimate grass biomass from roadside image data. The DWCGP calculates the length of continuously 

connected grass pixels along a vertical orientation in each image column, and then weights the length 

by the grass density in a surrounding region of the column. Grass pixels are classified using feedfor- 

ward artificial neural networks and the dominant texture orientation at every pixel is computed using 

multi-orientation Gabor wavelet filter vote. Evaluations on a field survey dataset show that the DWCGP 

reduces Root-Mean-Square Error from 5.84 to 5.52 by additionally considering grass density on top of 

grass height. The DWCGP shows robustness to non-vertical grass stems and to changes of both Gabor fil- 

ter parameters and surrounding region widths. It also has performance close to human observation and 

higher than eight baseline approaches, as well as promising results for classifying low vs. high fire risk 

and identifying fire-prone road regions. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Biomass, which is typically defined as the over-dry mass of 

the above ground portion of a group of vegetation in forestry 

( Vazirabad & Karslioglu, 2011 ), is one of the most important pa- 

rameters of roadside vegetation, such as grasses and trees. Auto- 

matic estimation of grass biomass can be useful in various real- 

world applications, including monitoring roadside grass growth 

conditions, enforcing effective roadside management, and evaluat- 

ing road safety. One typical example regarding the use of biomass 

is to identify the level of fire risk due to the presence of high, 

dense and dry roadside grasses, which are often characterized 

by high biomass. From the perspective of the transport, roadside 

grasses of high biomass can potentially become a big fire threat 

to the safety of vehicles, particularly in remotely located rural re- 

gions. Enforcing regular and frequent checks on roadside grass con- 

ditions by humans in a large state road network is often a big bur- 

den for transport authorities in terms of labour, cost, and time in- 
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vestments. Thus, it is of great significance to develop systems that 

are capable of automatically estimating the biomass of roadside 

grasses and precisely identifying those roadside regions with high 

fire risk, whereby necessary actions can be carried out to prevent 

possible fire threats such as burning or cutting the grasses. 

A typical method of calculating biomass is to conduct field sur- 

veys, which often include destructive plant sampling within a sam- 

pling region and calculating the weight after over-drying them 

( Royo & Villegas, 2011 ). It is one of the most accurate ways for 

obtaining biomass. Obviously, this method is heavily dependent on 

human effort s and requires extensive time, labour and cost, as well 

as expertise and equipment support. More importantly, it is unsuit- 

able for automatic processing of data from large-scale fields. 

The vast majority of existing solutions to automatically estimat- 

ing the above-ground biomass of vegetation have been investigated 

using remote sensing methods ( Lu et al., 2016 ). The basic assump- 

tion of remote sensing methods for biomass estimation is that the 

mass of biomass is proportional to the volume of the vegetation 

and accordingly existing methods mainly base the biomass esti- 

mation on the upper layer of the canopy. The remotely sensed 

data can be captured using different types of sensors mounted 

on airborne, space-borne or terrestrial platforms. Optical spectral 

sensors are one of the most common ways of acquiring remotely 
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sensed data with various spatial, spectral, radiometric and tem- 

poral resolutions. Typical examples of optical measurements are 

Vegetation Indices (VIs) ( Schaefer & Lamb, 2016 ), spectral bands 

( Sibanda, Mutanga, & Rouget, 2016 ) and spatial image texture 

( Lu et al., 2016 ). However, it is often difficult to obtain high qual- 

ity optical data in frequent cloud conditions, and the optical mea- 

surements are prone to be affected by variations in solar radia- 

tion. Not all vegetation indices are closely related with biomass. 

The widely used Synthetic Aperture Radar (SAR) ( Santi et al., 2017 ) 

and LIght Detection And Ranging (LIDAR) ( Andújar et al., 2016 ; 

Zhang & Grift, 2012 ) sensors offer a better tolerance to weather 

and light conditions and are capable of collecting three dimen- 

sional distribution of structures within vegetation. Thus, they al- 

low precise analysis on the characteristics of vegetation including 

biomass. However, these sensors are largely dependent on satellite 

or airborne platforms in existing studies, which leads to high costs 

and low flexibility. To provide more economical and convenient 

ways for data collection, more recent advances have tended to 

adopt drone-based sensors ( Fan et al., 2017 ; Kachamba, Ørka, Gob- 

akken, Eid, & Mwase, 2016 ; Tang & Shao, 2015 ) or ground-based 

sensors such as ultrasonic sensor ( Chang, et al., 2017; Moeckel, Sa- 

fari, Reddersen, Fricke, & Wachendorf, 2017 ) and mobile laser scan- 

ner ( Ryding, Williams, Smith, & Eichhorn, 2015 ; Li, Li, Zhu, & Li, 

2016 ). Similar to satellite or airborne data, data collected using 

drone-mounted sensors reflect predominantly the upper canopy 

layers. Ground-based sensors can capture the whole above-ground 

structure of vegetation and thus they are suitable for biomass esti- 

mation in both large-scale and site-specific field surveys. 

Except for remote sensing methods, another relatively less in- 

vestigated method for biomass estimation is to use ground-based 

digital image or video data captured using ordinary cameras. Com- 

pared with remotely sensed data, ground-based images or video 

are relatively easier to collect using everyday devices such as or- 

dinary cameras, smart phones and tablets, and can be operated 

by general people without requiring specialized knowledge. For 

the purpose of this paper, our industry partner – Department of 

Transport and Main Roads (DTMR), Queensland, Australia collects 

roadside video data from main state roads in Queensland using 

vehicle-mounted cameras, thereby human are employed to visu- 

ally assess roadside conditions, such as vegetation species, height, 

fuel load, and potential safety threats to roads. For real-world ap- 

plications where only ground-based video data are available, it is 

crucially important to develop automatic systems capable of esti- 

mating biomass from video frames. 

Estimating biomass from ground-based digital image or video 

data is still a seldom investigated field. Studies ( Juan & Xin- 

yuan, 2009 ; Sritarapipat, Rakwatin, & Kasetkasem, 2014 ) exploited 

the way of estimating the height of vegetation from ground-based 

digital images. The height was calculated by measuring the dis- 

tance between reference markers, which were pre-set manually 

on different parts of vegetation. Thus, these methods cannot be 

directly used for automatic applications. In our previous work 

( Verma, Zhang, & Stockwell, 2017 ), we have proposed the Verti- 

cal Orientation Connectivity of Grass Pixels (VOCGP) approach to 

automatically predict roadside grass biomass based on the grass 

height in images. The VOCGP approach segments brown grass pix- 

els using an Artificial Neural Network (ANN) classifier with color 

and texture features, and detects the dominant texture direction 

at every pixel by performing Gabor-based votes on local texture. 

It then obtains the length of continuously connected grass pixels 

along every image column and takes an average length as the pre- 

dicted biomass. However, the approach estimates the biomass pre- 

dominantly based on the grass height and has largely ignored the 

contribution of the grass density to the biomass. The grass density 

is also an important for determining the grass biomass. 

To solve the drawbacks in existing methods, this paper pro- 

poses Density Weighted Connectivity of Grass Pixels (DWCGP) to 

automatically estimate the biomass of roadside grasses in ground- 

based images. The DWCGP extends the VOCGP approach by jointly 

considering both grass height and density in the estimation of 

biomass, and thus it is expected that the DWCGP can produce 

more accurate estimation results. The main novelties in this pa- 

per are (a) a novel concept for determining the grass pixel orien- 

tation, height, and density without using any reference object; and 

(b) a novel integrated framework based on grass region segmenta- 

tion and vertical grass orientation for grass biomass calculation. To 

the best of our knowledge, this is one of the first attempts that es- 

timate grass biomass on ground-based data using image processing 

techniques. 

The original contributions of this paper are as follows: 

(a) A concept of DWCGP for estimating grass biomass based 

on local texture features in a sampling image window is 

presented. The DWCGP measures both the grass height and 

density to quantify the fuel loads of grasses, leading to ac- 

curate prediction of the biomass. 

(b) An integrated framework for DWCGP calculation based on 

the results of grass vs. non-grass pixel classification and ver- 

tical vs. non-vertical orientation detection is presented. Be- 

cause the framework does not require manually setting up 

reference makers, nor the availability of specified equipment 

rather than a digital camera, it can be directly applied into 

site-specific analysis in a large-scale field. 

(c) An evaluation of DWCGP is presented by conducting a large 

number of experiments and comparisons with ground truths 

of both objective biomass and subjective density of roadside 

grasses collected from field surveys. A comparative analysis 

to show the effectiveness of DWCGP in supporting fire-prone 

road identification is included as well. 

The remainder of the paper is organized as follows. 

Section 2 discusses related work. Section 3 introduces the 

proposed DWCGP approach. Experimental results are presented in 

Section 4 . Section 5 draws the conclusions. 

2. Related work 

This section reviews prior work on grass region segmen- 

tation and grass height estimation. Although intensive works 

( Hamuda, Glavin, & Jones, 2016 ) have been reported on vegeta- 

tion or crop analysis and scene understanding, only few stud- 

ies have specifically focused on roadside grass analysis. Compared 

with grassland vegetation, roadside grasses often have a more vis- 

ible profile of the whole structure (e.g. appearance, geometry and 

length of grass stems), which is particularly important for analyz- 

ing tall grasses. By contrast, analysis of grassland vegetation is of- 

ten restricted to the upper layer of grasses only. 

2.1. Grass region segmentation 

Existing work relevant to grass region segmentation can be ap- 

proximately divided into two groups, including visible and invisible 

feature approaches. 

(a) Visible feature approaches extract visual properties of veg- 

etation such as shape, texture, geometry, structure and color 

in the visible spectrum to distinguish them from other ob- 

jects such as sky, road and soil. They can be further di- 

vided into three groups: (1) approaches that extract fea- 

tures from a Region Of Interest (ROI) for object classification. 

Campbell, Thomas, and Troscianko (1997) adopted a self-organizing 

feature map for object segmentation using color and Gabor texture, 

and a multi-layer perceptron for classifying 11 outdoor objects. 
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