
Expert Systems With Applications 100 (2018) 30–40 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Improved solution strategies for dominating trees 

Pablo Adasme 

a , Rafael Andrade 

b , ∗, Janny Leung 

c , Abdel Lisser d 

a Universidad de Santiago de Chile, Departamento de Ingeniería Eléctrica, Avenida Ecuador Santiago 3519, Chile 
b Universidade Federal do Ceará, Departamento de Estatística e Matemática Aplicada, Campus do Pici, bloco 910, CEP 60.440-900, Fortaleza-CE, Brasil 
c School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China 
d Laboratoire de Recherche en Informatique, Université de Paris-Sud, Bât. 650, 91405 Orsay Cedex, France 

a r t i c l e i n f o 

Article history: 

Received 22 May 2017 

Revised 3 January 2018 

Accepted 20 January 2018 

Available online 31 January 2018 

Keywords: 

Wireless sensor network 

Dominating tree 

Primal-dual model 

Cutting plane. 

a b s t r a c t 

Intelligent systems in Wireless Sensor Networks (WSN) allow to eliminate duplicated sensed data and to 

efficiently route them to a central processing unit. Thus, augmenting WSN lifetime while keeping sen- 

sors connectivity and routing the sensed information through an optimized network structure. This work 

discusses a set of improved exact solution strategies that were effective to the design of a minimum en- 

ergy consumption structure for the sensors data communication. We present an extended version of a 

primal-dual model for the minimum cost dominating tree (DT) problem, as well as valid inequalities to 

improve its linear relaxation. We discuss structural properties of dominating sets and trees used to con- 

ceive efficient cutting plane strategies. We adapt accordingly reduction techniques from dominating sets 

to the DT problem. The new solution techniques allow to handle to optimality challenging benchmark 

and new randomly generated DT instances with up to 100 nodes, which was not possible to achieve with 

state-of-the-art models for the problem. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Wireless sensor networks (WSN) are very important in many 

applications as monitoring natural disasters, health care devices, 

area intrusion, among others. Sensed data can contain duplicated 

information if two or more sensors detect the same event. Send- 

ing duplicated data from sensors to a central processing unit leads 

to an excessive energy consumption, as well as if the sensed data 

is not routed through a path with minimum energy consumption. 

Optimizing WSN lifetime is a very promising area of interest in 

computing and communication technology with the use of unified 

intelligent softwares ( Hacioglu, Kand, & Sesli, 2016 ). A key ingredi- 

ent to reduce energy consumption is related to the network topol- 

ogy and the rule of sensors in a WSN. As nodes have a limited 

battery autonomy, they are now expected to act as expert systems 

concerning many aspects related to the data transmission based on 

local sensors knowledge ( Reina, Ciobanu, Toral, & Dobre, 2016 ). The 

focus of this work is to provide effective exact solution strategies 

to the design of a minimum energy consumption topology for the 

sensors data communication in WSN. In this case, intelligent soft- 

wares can be integrated to sensors in order to automatically dis- 

tinguish and eliminate duplicated sensed information and to route 
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the sensed filtered data through an optimized structure, thus aug- 

menting the WSN lifetime. 

In a WSN, a node can communicate directly with its neighbors 

if its radial transmission range reaches them. Connectivity and en- 

ergy saving are the key ingredients to achieve this goal ( Carle & 

Simplot-Ryl, 2004 ). Usually, to keep a wireless sensor network op- 

erating as long as possible, we distinguish two connected struc- 

tures for sensor message communications. In the first structure, we 

assume fixed transmission radius. When a sensor receives a mes- 

sage for the first time, it retransmits this message to its neighbors. 

This causes a redundant message retransmission, possibly aug- 

menting the network energy consumption that is estimated based 

on the number of hops needed to accomplish the sensor com- 

munications. In order to reduce the number of hops in message 

retransmissions and, consequently, the network energy consump- 

tion, we are interested in a connected dominating set 1 of sensors 

of minimum cardinality ( Gendron, Lucena, da Cunha, & Simonetti, 

2014 ). An alternative approach, instead of considering the number 

of hops to accomplish sensor communications, consists in adjust- 

ing the transmission range. In this more realistic situation, energy 

consumption is determined as a function of the distance between 

sensors. This may require more active sensors in the connected 

1 A set D ⊂ S is dominating if for all s ∈ S , or s ∈ D or s is adjacent to some element 

of D . A set is connected if there exists a path between any pair of its elements. 

https://doi.org/10.1016/j.eswa.2018.01.031 

0957-4174/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.eswa.2018.01.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.01.031&domain=pdf
mailto:pablo.adasme@usach.cl
mailto:rca@lia.ufc.br
mailto:jannyleung@cuhk.edu.cn
mailto:lisser@lri.fr
https://doi.org/10.1016/j.eswa.2018.01.031


P. Adasme et al. / Expert Systems With Applications 100 (2018) 30–40 31 

dominating set, but reduces individual sensor energy consumption 

and augments the network lifetime. In this case, message commu- 

nications are realized by using a tree topology of minimum total 

distance spanning a dominating set of sensors ( Shin, Shen, & Thai, 

2010 ). The first situation is a particular case of the second one 

when we consider equal distance for all network connections. 

The recent literature on mathematical models and solution ap- 

proaches to solve to optimality the minimum connected dominat- 

ing set (MCDS) and the minimum dominating tree (MDT) is re- 

sumed to a few works ( Adasme, Andrade, Leung, & Lisser, 2016; 

Gendron et al., 2014; Shin et al., 2010 ). ( Shin et al., 2010 ) proposed 

heuristics and an integer programming (IP) model for MDT with 

an exponential number of sub-tour elimination constraints. Their 

IP model was able to solve to optimality DT instances with up to 

17 nodes. Adasme et al. (2016) proposed two compact models for 

MDT. One of them is based on an extended version ( Andrade, 2014 ) 

of the polytope of spanning trees introduced in Adasme, Andrade, 

Letournel, and Lisser (2015) . The other primal-dual compact model 

in Adasme et al. (2016) is based on Miller–Tucker–Zemlin (MTZ) 

( Miller, Tucker, & Zemlin, 1960 ) sub-tour elimination constraints. 

The compact models in Adasme et al. (2016) were able to han- 

dle instances with up to 100 nodes. Nevertheless, the instances 

in Adasme et al. (2016) proved to be very easy to solve when 

compared to lower edge-density instances generated according to 

Sundar and Singh (2013) . Concerning MCDS, ( Gendron et al., 2014 ) 

essentially proposed a Benders decomposition algorithm and a 

branch-and-cut method both based on connected dominating set 

properties. One of their models is based on the dominating tree 

concept because if a dominating set is connected, then there exists 

a tree spanning its nodes. Thus, minimizing the number of edges 

in a DT is equivalent to minimize the number of nodes in the cor- 

responding connected dominating set. 

In this work we are interested in exact solution approaches 

to solve to optimality the minimum dominating tree problem. 

We focus on an improved version of the primal-dual model in 

Adasme et al. (2016) and discuss structural properties of dominat- 

ing sets and trees that are used to conceive efficient cutting plane 

strategies to this problem. We show that some valid properties for 

MCDS ( Gendron et al., 2014 ) and for dominating sets ( Alber, Fel- 

lows, & Niedermeier, 2004 ), when adapted accordingly, are very 

helpful. Our solution strategies are used to improve the linear re- 

laxation of the primal-dual model in Adasme et al. (2016) . They 

allow to handle to optimality some challenging benchmark DT in- 

stances ( Chaurasia & Singh, 2016; Sundar & Singh, 2013 ) and two 

new sets of randomly generated ones with up to 100 nodes in sig- 

nificantly less computational effort and with a considerably lower 

number of branch-and-bound nodes. 

The paper is organized as follows. In Section 2 , we present 

some existing MDT models and develop the main theory leading 

to an improved model to efficiently solve this problem with the 

use of a cutting-plane procedure. Section 3 reports numerical re- 

sults and Section 4 presents the conclusions of this work. 

2. MDT models 

2.1. Problem definition and complexity 

Given an undirected graph G = (V, E) with a set of nodes V and 

a set of weighted edges E , a dominating tree T = (V (T ) , E(T )) of 

nodes V ( T ) ⊂ V , and edges E ( T ) ⊂ E , is an acyclic connected graph 

where V ( T ) is a dominating set, i.e., every node v ∈ V or is in V ( T ) 

or is adjacent to a node in V ( T ). The weight of a tree T is defined as 

�e ∈ E ( T ) c e , where c e ∈ R + is the weight of an edge e ∈ E . The MDT 

problem is to determine a dominating tree of minimum weight of 

G . 

This problem is NP-hard. To see this, consider the problem of 

determining a dominating tree of minimum cost in a graph G = 

(V ∪ F , E 1 ∪ E 2 ) , with V = { 1 , 2 , . . . , n } , F = { n + 1 , n + 2 , . . . , 2 n } , 
E 1 = { u v | u ∈ V, v ∈ V − u } , and E 2 = { u v , | u ∈ V, v = u + n ∈ F } . Let 

us assume that each edge uv ∈ E 1 has positive cost and that the 

cost of every edge in E 2 is equal to one. Thus, obtaining a Hamil- 

tonian path of minimum cost in the subgraph induced by V , say 

G 

′ = (V, E 1 ) , known to be NP-hard, gives an optimal solution to the 

DT problem. 

2.2. Graph concepts and notation 

For a directed graph G = (V, A ) with a set of nodes V and a set 

of weighted arcs A , a dominating arborescence T = (V (T ) , A (T )) 

with nodes V ( T ) ⊂ V and arcs A ( T ) ⊂ A , is an acyclic connected di- 

rected graph where V ( T ) is a dominating set. In any arborescence, 

there is a root node with no incoming arc and the remaining nodes 

have exactly one incoming arc. 

Notations E ( S ) and A ( S ) denote subsets of edges of E and arcs of 

A , respectively, with both endpoints in S ⊂ V. A ( S, V �S ) represents 

the subset of arcs of A with one endpoint in S ⊂ V and the other 

one in V �S . In an undirected graph, the notation N(v ) = { u | u v ∈ E} 
represents the neighborhood of a node v . For directed graphs, we 

define the negative neighborhood of a node v as N 

−(v ) = { u | u v ∈ 

A } , its positive neighborhood as N 

+ (v ) = { u | v u ∈ A } , and its neigh- 

borhood as N(v ) = N 

−(v ) ∪ N 

+ (v ) . The closed neighborhood of a 

node v is defined as N[ v ] = N(v ) ∪ { v } for both directed and undi- 

rected graphs. A subgraph G [ S] = (S, E(S)) of a graph G = (V, E) , 

where E(S) = { u v ∈ E | u, v ∈ S} , is the graph induced by the set of 

nodes S ⊂ V . G [ { v } ] = ({ v } , ∅ ) is called a trivial graph. 

A node v ∈ V (resp. an edge e ∈ E ) whose exclusion from G = 

(V, E) disconnects G in two or more connected components is 

called a cut node (resp. a cut edge). Given two disjoint sets S 1 , 

S 2 ⊂ V , if for all v ∈ S 2 there exists u ∈ S 1 such that uv ∈ E , then S 2 is 

dominated by S 1 ; otherwise, S 2 is not dominated by S 1 . 

Given an undirected graph G = (V, E) , a dominating tree T of G 

is represented by an incidence vector x ∈ {0, 1} | E | , where x u v = 1 if 

edge uv ∈ E ( T ) and x u v = 0 , otherwise. We also use x variables to 

represent an arborescence of a directed graph G = (V, A ) . In this 

case, x ∈ {0, 1} | A | , where x u v = 1 if arc uv ∈ A ( T ), and x u v = 0 , oth- 

erwise. We use the same notation for edges and arcs to unify the 

understanding of the next models. We use binary variables y v ∈ {0, 

1}, for all v ∈ V , where y v = 1 if v ∈ V ( T ); and y v = 0 , otherwise. G [ x ] 

represents the support graph induced by the non-null components 

of x . 

2.3. Model of Shin et al. (2010) 

Consider G = (V, E) an undirected graph. The model in 

Shin et al. (2010) is 

(P ) min 

∑ 

u v ∈ E 
c u v x u v (1) 

s.t. 
∑ 

u v ∈ E 
x u v −

∑ 

v ∈ V 
y v = −1 , (2) 

∑ 

u v ∈ E(S) 

x u v ≤ | S| − 1 , ∀ S ⊂ V, (3) 

y u + y v − 2 x u v ≥ 0 , ∀ u v ∈ E, (4) 

∑ 

u ∈ N(v ) 
y u ≥ 1 , ∀ v ∈ V, (5) 

x u v ∈ { 0 , 1 } , ∀ u v ∈ E, y u ∈ { 0 , 1 } , ∀ v ∈ V, (6) 
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