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a b s t r a c t 

ε-support vector regression ( ε-SVR), as a direct implementation of the structural risk minimization prin- 

ciple rather than empirical risk minimization principle, is a new regression method with good generaliza- 

tion ability and can efficiently solve small-sample learning problems. In this work, through incorporating 

gradient information into the traditional ε-SVR, the gradient-enhanced ε-SVR (GESVR) is developed. The 

efficiency of GESVR is compared with the traditional ε-SVR by employing analytical function fitting, com- 

pared with the gradient-enhanced least square support vector regression (GELSSVR) by using two real-life 

examples, and tested in a scenario where the exact gradient information is unknown. The results show 

that GESVR provides more accurate prediction results than the traditional ε-SVR model, and outperforms 

GELSSVR in some real-life cases. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Support Vector Machine (SVM) was first introduced by 

Vapnik (1995) . The SVM was originally applied to deal with clas- 

sification problems and soon extended to regression problems 

( Smola & Schölkopf, 2004 ). Compared with other estimation mod- 

els, such as artificial neural networks (ANN), SVR employs Struc- 

ture Risk Minimization (SRM) rather than the traditional Empirical 

Risk Minimization (ERM) principle to address the overfitting prob- 

lem and thereby has higher generalization ability. When applied 

in a complex, nonlinear and unstable system, just as presented in 

Clarke, Griebsch, and Simpson (2005) , the SVR can achieve bet- 

ter performance than other methods such as radial basis func- 

tion (RBF) model ( Fang, Li, & Sudjianto, 2006 ), least interpolat- 

ing polynomials ( Boor & Ron, 1990 ), inductive learning ( Langley 

& Simon, 1995 ), multivariate adaptive regression splines (MARS) 

( Friedman, 1991 ) and Kriging ( Cressie, 1988 ). Recent applications 

of ε-SVR into modeling can be traced in Zhou and Ma (2013) ; 

Zhou, Ma, and Li (2011) ; Zhou, Ma, Tu, and Feng (2012) . 

The construction of the traditional model does not consider the 

gradient information in the samples. If these gradients can be eas- 

ily obtained, they should be used to improve the performance of 

the model. Zhou and Jiang (2016a) used the gradient information 
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to enhance the prediction accuracy of least square support vector 

regression (LSSVR). Because ε-SVR is the most classical version of 

SVR, we try to construct the ε-SVR with gradient information in 

this paper. The process is quite different from the that of LSSVR, 

which is based on linear equations and therefore loses sparsity. 

Just as presented in the work of Zhou and Jiang (2016a) , 

there are a lot of methods to get the gradient information us- 

ing different programming languages in engineering practice, such 

as ADOL-C( Griewank, Juedes, & Utke, 1996 )/Adic( Bischof, Roh, & 

Mauer-Oats, 1997 )/FADBAD( Bendtsen & Stauning, 1996 ) for C++, 

ADOL-F( Shiriaev & Griewank, 1996 )/TAF (formerly TAMC)( Giering 

& Kaminski, 1998 )/Adifor( Bischof, Khademi, Mauer, & Carle, 

1996 )/Tapenade( Hascoët, 2004 ) for Fortran, and ADMIT( Coleman & 

Verma, 20 0 0 )/ADiMat( Bischof, Bucker, Lang, Rasch, & Vehreschild, 

2002 ) for MATLAB. The last one was adopted by Zhou and 

Jiang (2016a) to estimate the gradient information in their work. 

In this paper, we also use ADiMat to evaluate the gradients when 

the underlying function f required in ADiMat is available, other- 

wise, we employ the Kriging model to estimate the gradient infor- 

mation. 

The remainder of this paper is organized as follows. In the 

next section, we introduce the construction of traditional ε-SVR. 

In Section 3 , the gradient information in samples is considered in 

the process of construction of ε-SVR model, and the corresponding 

algorithm is presented. The presentation and discussion of results 

are displayed in Section 4 . At last, a brief conclusion is discussed 

in Section 5 . 
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2. The traditional ε -SVR 

This section focuses on describing the basic framework 

of traditional ε-SVR. Considering the work of Smola and 

Schölkopf (2004) has excellently explained its basic theory, 

we follow the corresponding part of the work of Smola and 

Schölkopf (2004) in this section. 

Given the data set { (x 1 , y 1 ) , . . . , (x l , y l ) } (where l denotes the 

size of the data set), the goal in ε-insensitive SVR is to find a func- 

tion f ( x ) that has at most ε deviation from the observed response 

value y i for all the training data, and meanwhile, is as flat as pos- 

sible. We first describe the case of linear functions f , which takes 

the form 

f (x ) = 〈 w , x 〉 + b, (1) 

where 〈 · , · 〉 denotes the inner product, w is the weight vector. 

Flatness of f means minimizing ‖ w ‖ 2 . Formally w can be obtained 

by solving the following convex optimization problem 

min 

1 

2 

‖ 

w ‖ 

2 

s.t. 

{
y i − 〈 w , x i 〉 − b ≤ ε 
〈 w , x i 〉 + b − y i ≤ ε . 

(2) 

The tacit assumption in (2) is that the convex optimization prob- 

lem is feasible. Nevertheless, sometimes this is not the case, and 

thus we should allow some errors. We can deal with otherwise in- 

feasible constraints of the optimization problem (2) by introducing 

slacking variables ξ ∗
i 

and ξ i . Hence we arrive at the following for- 

mulation expressed as 

min 

1 

2 

‖ 

w ‖ 

2 + C 

l ∑ 

i =1 

( ξ ∗
i + ξi ) 

s.t. 

{ 

y i − 〈 w , x i 〉 − b ≤ ε + ξ ∗
i 〈 w , x i 〉 + b − y i ≤ ε + ξi 

ξ ∗
i 
, ξi ≥ 0 . 

The user defined constant C > 0 controls the trade off between 

the flatness of f and the degree to which deviations larger than 

ε are tolerated. This method of tolerating error is known as the 

ε-insensitive loss function described by 

L ε ( ξ ) = 

{
0 , | ξ | < ε 

| ξ | − ε , other, 

where ε is another parameter specified beforehand by the user. 

The Lagrange function is constructed from the objective func- 

tion and its corresponding constraints, by introducing Lagrange 

multipliers, αi 
∗, αi , η

∗
i 
, ηi . Thus we proceed as follows: 

L = 

1 

2 

‖ 

w ‖ 

2 + C 

l ∑ 

i =1 

( ξ ∗
i + ξi ) −

l ∑ 

i =1 

α∗
i (ε + ξ ∗

i − y i + 〈 w , x i 〉 + b) 

−
l ∑ 

i =1 

αi (ε + ξi + y i − 〈 w , x i 〉 − b) −
l ∑ 

i =1 

(η∗
i ξ

∗
i + ηi ξi ) . (3) 

The dual variables in (3) should satisfy α∗
i 
, αi , η

∗
i 
, ηi ≥ 0 . This func- 

tion has a saddle point, which is obtained by minimizing of L with 

respect to the primal variables and maximizing with respect to the 

dual variables. The partial derivatives of L with respect to the pri- 

mal variables ( w , b, ξ ∗, ξ i ) must vanish for optimality. 

∂L 

∂w 

= w −
l ∑ 

i =1 

( α∗
i − αi ) x i = 0 , (4) 

∂L 

∂b 
= 

l ∑ 

i =1 

( α∗
i − αi ) = 0 , (5) 

∂L 

∂ξ (∗) 
i 

= C − α(∗) 
i 

− η(∗) 
i 

= 0 . (6) 

By substituting (4), (5) and (6) into (3) , we can get the dual opti- 

mization problem. 

min 

α( ∗) 

1 

2 

l ∑ 

i, j=1 

(
α∗

i − αi 

)(
α∗

j − α j 

)〈
x i , x j 

〉
−

l ∑ 

i =1 

(
αi − α∗

i 

)
y i 

+ ε 
l ∑ 

i =1 

(
α∗

i + αi 

)
s.t. 

{ 

0 ≤ α∗
i 
, αi ≤ C , i = 1 , . . . , l, 

l ∑ 

i =1 

(
α∗

i 
− αi 

)
= 0 . 

, 

From (4) we obtain 

w = 

l ∑ 

i =1 

( α∗
i − αi ) x i , 

and by substituting it into (1) , the ε-SVR prediction is found to 

be 

f (x ) = 

l ∑ 

i =1 

( α∗
i − αi ) 〈 x i , x 〉 + b . (7) 

Intercept b can be computed as follows: 

b = y i − 〈 w , x i 〉 − ε for α∗
i ∈ (0 , C) , 

b = y i − 〈 w , x i 〉 + ε for αi ∈ (0 , C) . 

In order to find a computationally cheaper way, the kernel function 

is introduced in (7) , which may be written as 

f (x ) = 

l ∑ 

i =1 

( α∗
i − αi ) k ( x i , x ) + b . 

There are a lot of alternatives for the kernel function K ( · , · ): 

1. k (x i , x j ) = (x i · x j ) (linear) 

2. k (x i , x j ) = (x i · x j ) 
m ( m degree homogeneous polynomial) 

3. k (x i , x j ) = (x i · x j + c) m ( m degree inhomogeneous polynomial) 

4. k (x i , x j ) = exp (−‖ x i −x j ‖ 2 
2 σ 2 ) (Gaussian) 

5. k (x i , x j ) = exp (−
l ∑ 

k =1 

θ
∥∥∥x k 

i 
− x k 

j 

∥∥∥p k 
)) (Kriging) 

In the above-mentioned kernel functions, the most popular one 

is the Gaussian kernel, which is also employed in this work. 

3. The ε -SVR with gradient information 

3.1. The primal optimization problem 

After mapping the input space X into a feature space, F = 

{ φ(x ) | x ∈ X } , the representation of the input variables can be 

changed to be: 

x = ( x 1 , . . . , x d ) 
T 	→ φ(x ) = (φ( x 1 ) , . . . , φ( x d )) 

T . 

The basic form of ε-SVR prediction will be the function of the 

type 

f (x ) = w 

T · φ(x ) + b. 

Then the first-order partial derivative of the f ( x ) can be defined as 

follows: 

D r (x ) = 

∂ f (x ) 

∂ x r 
= w 

T · ∂φ(x ) 

∂ x r 
, r = 1 , . . . , d, 
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