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a b s t r a c t 

This paper considers the non-smooth arc routing problem (NS-ARP) with soft constraints in order to 

capture in more perceptive way realistic constraints violations arising in transportation and logistics. To 

appropriately solve this problem, a biased-randomized procedure with iterated local search (BRILS) and a 

mathematical model for this ARP variant is proposed. An extensive computational study is conducted on 

rich and diverse problem instances. The results highlight the competitiveness of BRILS in terms of quality 

and time, where it provides high-quality solutions within reasonable computational times. In the context 

of real-world environments, the performance exhibited by BRILS motivates its incorporation in intelligent 

and integrative systems where frequent and fast solutions are required. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In real-life logistics and transportation, many decision-making 

processes can be modeled as combinatorial optimization prob- 

lems (OPs) ( Montoya-Torres, Juan, Huaccho Huatuco, Faulin, & 

Rodriguez-Verjan, 2012 ). In a combinatorial OP, a large number of 

feasible solutions need to be explored in order to select one that 

minimizes cost, maximizes benefit, etc. Frequently, combinatorial 

OPs have a well-structured definition consisting of an objective 

function to be optimized and a set of hard constraints that need to 

be satisfied ( Papadimitriou & Steiglitz, 1982 ). These OPs can usu- 

ally be formulated using mixed integer linear programming (MILP) 

models. However, most of them are NP-hard in nature, which im- 

plies that only small- to medium-sized instances can be solved 

in reasonable computing times by means of classical MILP meth- 

ods ( Garey & Johnson, 1990 ). Thus, heuristics and metaheuristics 

are usually required to solve medium- to large-sized instances. 

An additional difficulty arises when the mathematical model of 

the problem does not meet certain characteristics. In effect, when 

properties such as convexity and smoothness are not fulfilled, the 
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solution space might become highly irregular. In such situations, 

finding an optimal or near-optimal solution becomes a challenging 

task even for medium-sized instances. 

In this work, we study a relevant combinatorial OP under a 

non-smooth environment. In particular, we focus on the arc rout- 

ing problem (ARP) with realistic soft constraints, which impose 

penalty costs on the objective function. These penalty costs are 

usually defined as piecewise functions, thus transforming the ob- 

jective function into a non-smooth one. The ARP is a combinatorial 

OP originally introduced by Golden and Wong (1981) . In its basic 

version, the ARP is composed of a central depot, a fleet of iden- 

tical vehicles, and a network of arcs connecting nodes. Some of 

these arcs have a demand that must be served (see Fig. 1 ). Also, 

there is a cost associated with traversing each of the arcs. Under 

these circumstances, the usual goal is to find a set of routes (so- 

lution) which minimizes the total delivering cost while satisfying 

the following constraints: (i) every route starts and ends at the de- 

pot, (ii) each arc with a positive demand is served exactly by one 

vehicle, and (iii) the total demand to be served in any route does 

not exceed the vehicle loading capacity. The main novelty we in- 

troduce to this basic version is the inclusion of soft constraints, i.e., 

we consider a non-smooth penalty term to the objective function 

to penalize every time a given constraint is not fully satisfied. As 

discussed in Hashimoto, Ibaraki, Imahori, and Yagiura (2006) , “in 

real-world simulations, time windows and capacity constraints can be 

often violated to some extent”. In this paper thus, a threshold is im- 
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Fig. 1. Illustration of the arc routing problem. 

posed on the maximum cost (distance-based or time-based) any 

given route can take. Then, whenever a route exceeds this thresh- 

old a penalty cost is added to the total route cost. As in many real- 

life applications, this penalty cost will depend on the size of the 

gap between the actual route cost and the threshold. 

Accordingly, the main contributions of this paper are: (i) a dis- 

cussion on the importance of considering non-smooth objective 

functions in realistic combinatorial OPs, mainly due to the exis- 

tence of soft constraints; (ii) an original mathematical model that 

formally describes the non-smooth ARP (NS-ARP); (iii) a meta- 

heuristic approach, based on the integration of biased-randomized 

techniques ( Grasas, Juan, Faulin, de Armas, & Ramalhinho, 2017 ) in- 

side an iterated local search framework ( Lourenço, Martin, & Stüt- 

zle, 2010 ), to efficiently cope with the NS-ARP; and (iv) the use of 

CPLEX to solve a truncated version of the NS-ARP model, which 

allows us to obtain lower bounds for assessing our metaheuristic 

approach. 

Our current work contributes to the field of Expert and Intel- 

ligent Systems in several ways. Firstly, it considers of a more re- 

alistic ARP incorporating penalty costs when certain constraints 

are violated, i.e., introducing soft constraints. This is a more in- 

telligent way to address constraints violations, as we demonstrate 

comparing to other perspectives. Additionally, as mentioned before, 

we propose a solving methodology combining biased randomized 

techniques with an iterated local search metaheuristic framework. 

This system leads to important savings for the related logistics and 

transportation industry, and a mathematical model for this non- 

smooth version of the ARP help us to confirm its goodness. In 

the context of expert systems, several works have analyzed non- 

smooth optimization problems. Thus, for instance, Roy, Ghoshal, 

and Thakur (2010) deal with non-smooth power-flow problems, 

Lu, Zhou, Qin, Li, and Zhang (2010) propose an adaptive hybrid dif- 

ferential evolution algorithm to cope with a non-smooth version 

of the dynamic economic dispatch problem, and Ferrer, Guimarans, 

Ramalhinho, and Juan (2016) propose a biased-randomized meta- 

heuristic to solve the non-smooth flow-shop problem. As far as we 

know, however, there is a lack of publications considering realistic 

non-smooth cost functions in routing problems, which enhances 

the importance of this expert system. 

The remaining of the paper is structured as follows: 

Section 2 reviews some basic concepts related to non-convex 

/ non-smooth optimization problems, as well as how metaheuris- 

tics have been used in solving them. Section 3 presents a survey 

Fig. 2. Example of a non-convex and non-smooth objective function. 

on recent works on the ARP. A mathematical description of the 

NS-ARP is provided in Section 4 . In Section 5 a biased-randomized 

iterated local search algorithm is proposed as a solving method for 

the NS-ARP. Section 6 is devoted to explaining the computational 

experiments performed. Finally, conclusions and future work are 

described in Section 7 . 

2. Metaheuristics in non-convex / non-smooth OPs 

Optimization problems can be classified as either convex or 

non-convex. In general, convex OPs have two parts: a series of con- 

straints that represent convex regions and an objective function 

that is also convex. Linear programming (LP) problems represent 

a well-known example of convex OPs since linear functions are 

trivially convex. Other examples of convex OPs include quadratic 

programming, geometric programming, conic optimization, or least 

squares ( Boyd & Vandenberghe, 2004 ). In a convex OP, every con- 

straint restricts the space of solutions to a certain convex region. 

By taking the intersection of all these regions we obtain the set 

of feasible solutions, which is also convex. Due to the structure of 

the solution space, every single local optimum is a global optimum 

too. This is the key property that allows to efficiently solve convex 

OPs up to very large instances. Unfortunately, the algorithms ap- 

plied for solving convex OPs cannot be easily extended to solve 

the non-convex case. The solution space of the non-convex OPs is 

far more complex since the objective function and/or the region 

of feasible solutions are not convex. As a consequence, there exist 

many disjoint regions and multiple locally optimal points within 

each of them ( Fig. 2 ). Thus, a traditional local search is not enough 

since there is a risk of ending in a local optimum that may still be 

far from the global one. In addition, it can take an unreasonable 

amount of time to conclude that a non-convex OP is unfeasible, 

or that the objective function is unbounded, or even that the best 

solution found so far is, in fact, the global optimum. 

Non-smooth OPs are similar to non-convex OPs in the sense 

that they are much more difficult to solve than traditional smooth 

and convex problems. A function is smooth if it is differentiable 

and it has continuous derivatives of all orders. Therefore, a non- 

smooth function is one that has missed some of these proper- 
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