
Expert Systems With Applications 97 (2018) 106–116

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Relational calculi in a deductive system

�

Fernando Sáenz-Pérez

Faculty of Computer Science Complutense University of Madrid Madrid 28040, Spain

a r t i c l e i n f o

Article history:

Received 21 December 2016

Revised 19 October 2017

Accepted 4 December 2017

Available online 7 December 2017

Keywords:

Tuple relational calculus

Domain relational calculus

Relational algebra

SQL

Datalog

Database systems

a b s t r a c t

This work describes the addition of relational calculus languages in the deductive database system DES.

Based on first-order logic, such languages admit a clean logical reading of queries, providing truly declar-

ativeness, in contrast to other languages based on logic such as Prolog (a classical language used to build

expert systems). Interesting properties as termination (for finite relations) and recursion are ensured be-

cause the DES deductive engine is used for solving relational calculus queries. Recursion in particular

opens a brand new ream of applications (social networks, data warehouses, ...) for relational calculus

languages which were unmanageable up to now. Since the DES system was targeted at teaching, we

have also make a special emphasis on providing a practical system for students by providing appropriate

syntax error feedback in a system supporting different languages (including relational algebra, SQL and

Datalog).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An expert system can be built with an inference engine which

processes rules to deduce new facts in addition to the already

stored ones in a knowledge base. Rules can be as simple as if-then

rules or more elaborated forms based on First-Order Logic (FOL).

Systems implementing Prolog (a traditional language for building

expert systems (Merritt, 2001)) are examples of such FOL infer-

ence engines with support for a dynamic knowledge base. Despite

the acknowledged declarativeness of such systems, they however

present some drawbacks to build high-abstraction-level expert sys-

tems, including the following: First, the declarative level of rules is

lowered because the order of both rules and conjunctions in a rule

affects semantics. Second, non-logical construct as the cut break

the logical reading of rules, making the development of logical sys-

tems tricking and prone to errors. Third, they are geared towards

one answer at-a-time, while complex systems must reason about

the whole meaning of the logic system. And, finally, the clausal

form of rules, while being concise, hides logical quantifiers, mak-

ing developers to keep them in mind to fully comprehend the logic

equivalence of a rule.

Truly declarative languages include classical relational cal-

culi (RC) (Silberschatz, Korth, & Sudarshan, 2010) (for relational

databases), and Datalog (Green, Huang, Loo, & Zhou, 2013) (the de

� Work partially supported by the Spanish MINECO project CAVI-ART (TIN2013-

44742-C4-3-R) and Madrid regional project N-GREENS Software-CM (S2013/ICE-

2731).

E-mail address: fernan@sip.ucm.es

facto standard for deductive databases, but suffering also the last

aforementioned drawback). All such drawbacks might be overcome

with classical relational calculi if applied in a deductive database

system supporting the relational data model. As another advantage,

RC languages includes explicit use of both existential and universal

quantifiers, which is not allowed in pure Datalog.

This data model was introduced as early as 1970 by E.F. Codd

(Codd, 1970), and afterwards he developed in (Codd, 1972) two

formal languages under such data model: a Relational Algebra (RA)

and a Relational Calculus. This calculus is what we know nowadays

as Tuple Relational Calculus (TRC) and led to the widely-used SQL

language. Later, Lacroix and Pirotte (1977) introduced a variant of

TRC: the domain relational calculus (DRC). Based on FOL, both TRC

and DRC are truly declarative formal languages, which means that

a query written in a calculus expresses what the set of data one

wants to retrieve from the database, as opposed to how .

Such RC languages have been traditionally included in Com-

puter Science Curricula (CSC) as, e.g., the Joint ACM/IEEE CSC 2013

(Curricula, 2013). But, despite their advantages (declarative, FOL

formal languages, set-oriented), applying and teaching them can be

better achieved if a comprehensive state-of-the-art system is avail-

able. Thus, in this work, we describe a recent addition to the de-

ductive system DES (Sáenz-Pérez, Caballero, & García-Ruiz, 2011):

both TRC and DRC in the same deductive database setting in which

Datalog (the de facto query language for deductive databases), SQL

and RA already coexist (Sáenz-Pérez, 2014). This system permits

deductions with the inference engine it incorporates, deducing a

set of data as the outcome of a query in any of such languages.

As the inference engine implements a stratified fixpoint for deduc-

https://doi.org/10.1016/j.eswa.2017.12.007

0957-4174/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2017.12.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.12.007&domain=pdf
mailto:fernan@sip.ucm.es
https://doi.org/10.1016/j.eswa.2017.12.007

F. Sáenz-Pérez / Expert Systems With Applications 97 (2018) 106–116 107

tions, it can be effectively applied to the RC languages for solving

recursive definitions and queries. Though the possibility of solv-

ing recursive RC queries has been introduced with fixpoint and

while algorithms (Abiteboul, Vardi, & Vianu, 1995), to the best of

our knowledge, we provide the first available system allowing re-

cursion in RC languages. This opens a brand new ream of applica-

tions with RC languages, including those needing transitive closure,

reachability (social networks), same generation problems and the

like. In addition, it supports ODBC (Open DataBase Connectivity)

connections, making it possible to seamlessly solve RC queries on

data stored on external relational database management systems

(RDBMS).

DES was originally intended to education, and adding these cal-

culi also sets a new step towards this goal. This way, given for

granted that the relational data structure model coincides with the

deductive data model (Yazdanian, 1987) (atomic data are arranged

in predicates which can be understood as relations, i.e., relational

tables), all of these languages can retrieve data from the same re-

lations. So, students are able to exercise their acquired knowledge

about all these languages in a common setting, which can refer

to the local in-memory deductive database and external relational

databases.

Certainly, this is not the first system implementing these lan-

guages. There have been a few reported systems 1 such as the

Relational Calculus Emulator (Bhandari, 2011) and more impor-

tantly WinRDBI (Dietrich, Eckert, & Piscator, 1997) (built after

a first command-line processor implemented in Quintus Prolog

(Dietrich, 1993)), which is described in the book (Dietrich, 2001)

and used in many universities. The forthcoming Section 5 develops

a more elaborated related work study, and a comparison of DES

with current systems.

Despite the availability of these systems, several requirements

conform the motivation for adding support for RC in DES. First,

the original requirement was a feature request from an external

university, in order to have available all formal languages in a sin-

gle system. A second requirement is that, taking into account that

systems implementing formal languages are almost completely tar-

geted at students, more feedback from a practical system is needed

in terms of syntax error reporting (compared to those available in

other systems). To this end, we have included precise reports that

focus on the error source with the aim that students read them

and understand why their queries are not correct, in particular be-

cause safety (Ullman, 1988). Also, the graphical integrated develop-

ment environment ACIDE (Sáenz-Pérez, 2007) has been configured

for DES, helping students with syntax colouring to identify those

possible errors when typing their queries. As a third requirement,

we mention practicality, i.e., having all these languages in a sin-

gle system capable of external connections to relational databases,

with a comprehensive set of features in the languages and system

settings, and a straightforward installation in several OS platforms

(even with portable distributions and no root permissions).

So, in this paper we develop a system description of DES focus-

ing in the inclusion of RC and the above-mentioned requirements.

Section 2 introduces the syntax of TRC and DRC queries, including

relation definitions in these languages, the notion of valid queries,

propositional relations, and automatic type casting in a strong type

system. Other textbook syntax is included as a reference, as well

as some points about the implementation. Section 3 includes a

description of the error system. Section 4 briefly describes appli-

cations of TRC and DRC for understanding SQL, SPARQL and QBE.

As a sort of related work, Section 5 also includes a comparison

with the two available systems incorporating RC languages. Finally,

1 In contrast to the much more RA systems which have been developed and made

available.

Section 6 concludes and highlights some points worth of future

work.

2. Relational calculi in DES

Relational calculus was proposed by E.F. Codd in (Codd, 1972)

as a relational database sublanguage, together with a relational al-

gebra with the same purpose. In that paper, he introduced what

we know today as Tuple Relational Calculus (TRC) with a positional

notation for relation attributes instead of the named notation more

widely used nowadays. Whereas positional notation refers to rela-

tion attribute positions by a numeric index (as, e.g., Employee.1
for the relation employee(eID,...)), named notation refers to

relation attributes by their names (as Employee.name). Domain

Relational Calculus (DRC) was proposed in (Lacroix & Pirotte, 1977)

and includes domain variables as opposed to the tuple variables

in TRC. Relational calculi express queries with logic constructs

(conjunction, disjunction, negation, implication, and existential and

universal quantifications), while RA includes operators including

the Cartesian product, selection and projection. Both calculi are ac-

knowledged as more declarative than their counterpart Relational

Algebra (RA) because while the algebra requires to specify the or-

der of the operations needed to compose the output data, the cal-

culi do not (Levene & Loizou, 1999).

Next, before presenting TRC and DRC syntax, relations are in-

troduced.

2.1. Relations

A relation schema R (a 1 , . . . , a n) : D 1 × . . . × D n is defined by

its name R , its attributes with names a i and corresponding do-

mains (types) D i . Extensional relations (i.e., tables) are defined in

DES either with SQL Data Definition Language (DDL for creating,

dropping, and modifying schemas) statements (CREATE TABLE ,
ALTER TABLE , ...) or with Datalog assertions (:-type , :-pk , ...).
Available types for defining schemas are inherited from SQL and

relation and attribute identifiers start either with lower-case or are

delimited by double quotes (" , following ISO recommendation). In-

tensional relations (i.e., views) are specified with the assignment

operator (←) of formal relational languages, with the textual syn-

tax R : = Q , where R is the name of the relation and Q is a query.

The attribute names can be specified as a tuple after R or au-

tomatically generated from the relations they are built. Argument

types are inferred.

A relation instance I R ⊆ D 1 × . . . × D n is a set of actual tuples

for a relation R . Instances of extensional relations are built in DES

either with SQL Data Manipulation Language (DML for data up-

dates, deletions and insertions) statements (INSERT INTO , ...) or

with commands (/assert , ...) Instances of intensional relations

are built via query solving.

2.2. TRC queries

Textual syntax of TRC statements (queries) in DES follows

(Dietrich, 2001) (with a case-sensitive, named notation for user

identifiers) but relaxing some conditions to ease the writing of

queries. For instance, parentheses are not required unless they are

really needed, but nonetheless they can be used sparingly to help

reading. The basic syntax of a TRC query (alpha expression as

known in (Codd, 1972)) is:

{ VarsAttsCtes | Formula }

where VarsAttsCtes is known as the target list: a comma-

separated sequence of either tuple variables, or attributes, or con-

stants:

Download English Version:

https://daneshyari.com/en/article/6855187

Download Persian Version:

https://daneshyari.com/article/6855187

Daneshyari.com

https://daneshyari.com/en/article/6855187
https://daneshyari.com/article/6855187
https://daneshyari.com

