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a b s t r a c t 

Packing identical spheres occur in several commercial and industrial contexts, like automated radio- 

surgical treatment planning and in materials science for studying the dynamic behavior of granular mate- 

rial systems. In this paper, a hybrid algorithm is proposed for approximately solving the identical sphere 

packing problem. Given a set of identical spheres and a large container (open or spherical container), the 

goal of the problem is to find a smallest container that contains all spheres without overlapping between 

spheres and between spheres and the container. The proposed algorithm combines both particle swarm 

optimization and an efficient continuous local optimization procedure. The swarm optimization generates 

a series of diversified populations of particles whereas the continuous optimization serves either to re- 

pair the infeasibility of solutions or improve their qualities. The performance of the proposed algorithm 

is evaluated on a set of standard benchmark instances and its obtained results are compared to those 

reached by the more recent methods available in the literature. The experimental part shows that the 

proposed approach remains competitive, where it is able to reach 47 new upper bounds out of the 93 

tested instances. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Packing identical spheres occur in several commercial and in- 

dustrial contexts, like automated radio-surgical treatment planning 

where the problem is used as a tool for solving the radio surgical 

treatment planning (cf. Sutou & Dai, 2002 ) and, materials science 

where a random sphere packing problem is used as a model for 

studying the dynamic behavior of granular material systems (cf. Li 

& Ji, 2013 ). For these problems, it is often important to be able to 

get solutions with high-qualities. Fairly, simple deterministic and 

stochastic heuristics are often used for approximately solving these 

types of problems, but they generally well toward good solutions 

for some small instances whereas they provide mediocre solutions 

for more complex instances. In this paper, the Identical Sphere 

Packing (denoted ISP) is tackled with a hybrid algorithm that com- 

bines the particle swarm optimization and an efficient continuous 

local optimization. Two types of ISP are considered: the ISP with 

an Open container (denoted O-ISP), where the container has an un- 

limited length and, the ISP with a spherical container (denoted S- 

ISP), where its radius is unlimited. 

An instance of each of both problems is characterized by a set 

N of n identical spheres, where each sphere i ∈ N = { 1 , . . . , n } is 
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represented by its radius r i = 1 and the container is either P with 

fixed width W and height H but unlimited length L 0 = ∞ or S of 

unlimited radius S = ∞ . For both versions of the problem, the goal 

is to minimize the length L 0 (if the container P is open) or the ra- 

dius R 0 (if the container S is spherical) such that all items of N are 

positioned in P or R 0 , without overlapping between spheres and 

between spheres and the container. 

On the one hand, O-ISP can be formulated as follows: 

Minimize L 0 (1) 

d (i, j ) ≥ (r i + r j ) , ∀ (i, j) ∈ N 

2 , i < j (2) 

r i ≤ x i ≤ L − r i , ∀ i ∈ N (3) 

r i ≤ y i ≤ H − r i , ∀ i ∈ N (4) 

r i ≤ z i ≤ W − r i , ∀ i ∈ N (5) 

where d (i, j ) = 

√ 

(x i − x j ) 
2 + (y i − y j ) 

2 + (z i − z j ) 
2 , (i, j) ∈ N ×N, i � = 

j. Eq. (1) denotes the objective function that minimizes the length 

L 0 of the target container P . Eq. (2) represents the quadratic con- 

straints that ensure the non-overlapping between any pair of dis- 

tinct spheres. Eqs. from (3) to (4) represent the linear constraints 
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Table 1 

Function’s overlapping for both problems: between the positioned spheres and between spheres and the con- 

tainer. 

Between O-ISP S-ISP 

sphere and container O i,x = max 
{

0 , r i + | x i | − 1 
2 

L 0 
}

O 0 ,i = max { 0 , d(i, 0) + r i − R 0 } 
O i,y = max 

{
0 , r i + | y i | − 1 

2 
H 
}

O i,z = max 
{

0 , r i + | z i | − 1 
2 

W 

}
sphere and sphere O i, j = max { 0 , r i + r j − d (i, j ) } O i, j = max { 0 , r i + r j − d (i, j ) } 

that represent the sphere’s feasibility when positioned into the 

container P of length L 0 . 

On the other hand, the problem S-ISP can be stated as fol- 

lows: 

Minimize R 0 (6) 

d (i, j ) ≥ (r i + r j ) , ∀ (i, j) ∈ N 

2 , i < j (7) 

d(0 , i ) ≤ (R 0 − r i ) , ∀ i ∈ N (8) 

where d (i, j ) = 

√ 

(x i − x j ) 
2 + (y i − y j ) 

2 + (z i − z j ) 
2 , (i, j) ∈ N, ×N, i � = 

j and d(0 , i ) = 

√ 

x 2 
i 

+ y 2 
i 

+ z 2 
i 
, i ∈ N. Eq. (6) denotes objective func- 

tion that minimizes the radius R 0 of the target container S . 

Each Eq. (7) represents the quadratic constraints that ensure the 

non-overlapping between any pair of distinct spheres and each 

Eq. (8) denotes the quadratic constraints representing the sphere’s 

feasibility when positioned into the container of radius R 0 . 

For both O-ISP and S-ISP, a packing can be represented by the 

following vector: 

−→ 

X = (F , x i , y i , z i , . . . , x n , y n , z n ) , 

where F , F = L 0 for O-ISP (resp. F = R 0 for S-ISP), denotes the 

length (resp. radius) of the target container P (resp. S) and 

(x i , y i , z i , . . . , x n , y n , z n ) is the coordinates of positions of the n 

packed spheres. 

In order to measure the infeasibility of a given packing 
−→ 

X , 

the amount of overlapping is measured following quantities rep- 

resented in Table 1 . 

Hence, according to both terms of overlapping, following the 

couple of spheres or a sphere with the container, the first overlap 

E( 
−→ 

X ) associated to the first version of the problem O-ISP is given 

as follows: 

E( 
−→ 

X ) = 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

O 

2 
i, j + 

N ∑ 

i =1 

(O i,x + O i,y + O i,z ) 

and that associated to the second problem S-ISP is given as fol- 

lows: 

E( 
−→ 

X ) = 

N−1 ∑ 

i =0 

N ∑ 

j= i +1 

O 

2 
i, j . 

The rest of the paper is organized as follows. Section 2 gives 

a literature review on the sphere packing problem. Section 3 de- 

scribes the basic steps of the particle swarm optimization and 

its adaptation for solving both versions of the packing problem. 

Section 3.2 discusses the main principle of the proposed method 

and the cooperation used for either repairing infeasibility of the 

solutions or the improvement of the quality of the solutions at 

hand. Section 4 evaluates the performance of the proposed method 

on benchmark instances, where its achieved results are compared 

to those reached by recent algorithms available in the literature. Fi- 

nally, Section 5 concludes by summarizing the contribution of the 

paper. 

2. Related work 

The ISP problem belongs to the Cutting and Packing family 

( Wascher, Haussner, & Schumann, 2007 ), which is considered as 

an old family of combinatorial optimization problems. The prob- 

lem of packing identical spheres into the smallest container (par- 

allelepiped or sphere) has received very little attention in the liter- 

ature. Most published papers focus on packing (or cutting) items in 

two-dimensional supports whereas very few papers addressing the 

problem of packing spheres into specific supports, like container or 

open container, are available. 

Among the available papers, Lochmann, Oger, and 

Stoyan (2006) addressed a statistical analysis for packing random 

spheres with variable radius distribution. Li and Ji (2013) studied 

a special problem of packing spheres into a cylinder container, 

where a dynamics-based collective method was proposed. 

Farr (2013) discussed the problem of random close packing frac- 

tions of lognormal distributions of hard spheres, where a one- 

directional procedure-based method is tailored; that is an ap- 

proach used in order to predict a close packing of spheres of log- 

normal distributions of sphere sizes. 

Packing spheres into a container has also been addressed by 

Sutou and Dai. (2002) who proposed a global optimization ap- 

proach. In Stoyan, Yaskow, and Scheithauer (2003) and Stoyan and 

Yaskow (2008) , the authors described a mathematical model for 

packing spheres into an open container, where both height and 

width are fixed whereas the length is a variable to be determined. 

They proposed a neighbor search based upon extremum points for 

achieving a series of solutions. 

M’Hallah, Alkandari, and Mladenovi ́c (2013) proposed a heuris- 

tic that is based on combining Variable Neighbor Search (VNS) 

with nonlinear programming solver. The method iterates moves of 

the current configuration and completes the partial configuration 

with a solver providing an approximate solution for a given non- 

linear programming. 

M’Hallah and Alkandari (2012) considered the principle used 

in M’Hallah et al. (2013) to solve the problem of packing identi- 

cal spheres into the smallest containing sphere. 

Soontrapa and Chen (2013) tackled the problem of packing 

identical spheres into a smallest containing sphere by using a ran- 

dom search following Monte Carlo’s method. 

Finally, Birgin and Sobral (2008) proposed twice-differentiable 

non-linear programming models for packing both circles and 

spheres into different containers where the containers may be cir- 

cular, rectangular, etc. In order to reach a global solution for their 

proposed models, ALGENCAN solver was used for generating a 

multiple starts solutions (an extensive efficient models and meth- 

ods for packing both circular and sphere problems were reviewed 

in Hifi & M’Hallah, 2009 ). 

Particle Swarm Optimization (PSO) is considered as an evo- 

lutionary approach, where it has been proven to be very effec- 

tive for many optimization (non)constraints problems (cf. Kennedy 

et al., 2001 ). However, using PSO for solving constraint optimiza- 

tion problems remains challenging because only few papers fo- 

cused on solving these problems are available in the literature. 
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