
Expert Systems With Applications 95 (2018) 190–200

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Remediating critical cause-effect situations with an extended BDI

architecture

J. Faccin

a , ∗, I. Nunes a , b

a Universidade Federal do Rio Grande do Sul, Instituto de Informática, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501–970, Brazil
b TU Dortmund, Fakultät für Informatik, Otto-Hahn-Straße 12, Dortmund 44227, Germany

a r t i c l e i n f o

Article history:

Received 7 June 2017

Revised 14 November 2017

Accepted 15 November 2017

Available online 15 November 2017

Keywords:

Software agents

BDI Architecture

Remediation action

Cause-effect

Goal generation

Plan selection

a b s t r a c t

Remediation actions are performed in scenarios in which consequences of a problem should be promptly

mitigated when its cause takes too long to be addressed or is unknown. Such scenarios are recurrent

in the real world, including in the context of computer science. Existing approaches that address these

scenarios are application-specific. Nevertheless, the reasoning about remediation actions as well as cause

identification and resolution, in order to address problems permanently, can be abstracted in such a way

that they can be incorporated to autonomous software components, often referred to as agents. They can

thus autonomously deal with these scenarios, which we refer to as critical cause-effect situations . In this

paper, we propose a domain-independent extension to the belief-desire-intention (BDI) architecture that

provides such agents with this automated reasoning. Our work provides an extensible solution to this

recurrent problem-solving strategy and allows agents to flexibly deal with resource-constrained scenar-

ios. This solution removes the need for manually implementing the coordination of actions performed

by agents, using causal models to capture the knowledge required to carry out this task. Therefore, it

not only allows the development of systems with remediative behaviour, but also enables the reduc-

tion of development effort by means of a reusable infrastructure that can be used in several different

domains. Our approach was evaluated based on an existing solution in the network resilience domain,

which showed that our extended agent can autonomously address a network challenge, with a reduction

in the development effort and no impact in agent performance.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Human problem-solving is complex and involves the adoption

of different strategies when facing problems. A not unusual sce-

nario involves the realisation that what is being addressed is ac-

tually a consequence, or effect , that has a cause . In order to per-

manently solve the problem, both cause and effect must be dealt

with. In such scenarios, there are issues to be taken into account

in the practical reasoning (Bratman, 1987), i.e. the process of de-

ciding how to act. First, remediation actions may be performed in

order to mitigate effects, before addressing the cause, which must

also be dealt with; otherwise, effects will likely reappear. Second,

the cause may be unknown and, in this case, this should be inves-

tigated so that the real problem can be identified and resolved. If

causes remain unaddressed, effects may return even with greater

impact.

∗ Corresponding author.

E-mail addresses: jgfaccin@inf.ufrgs.br (J. Faccin), ingridnunes@inf.ufrgs.br (I.

Nunes).

There are many real-world situations that match the scenario

described above. In computer science, different examples can be

observed. An example is in the context of network resilience

(Sterbenz et al., 2010), which is the ability to provide and main-

tain an acceptable level of service in the face of faults and chal-

lenges to normal operation (e.g. a malicious attack). When deal-

ing with a distributed denial-of-service (DDoS) attack, network op-

erators must minimise the number of users affected by the un-

availability of the service provided by the infrastructure being at-

tacked. At the same time, they must act towards the identification

and isolation of the attack origin to have it permanently blocked

(Schaeffer-Filho et al., 2012). Another example can be seen in self-

healing systems (Breitgand, Goldstein, Henis, Shehory, & Weins-

berg, 2007), which are software systems able to monitor, diagnose,

analyse and heal their problems, and prevent them from reappear-

ing. To automate software memory management, objects that are

no longer used, but still referred to, in Java programs (loitering ob-

jects, a form of memory leak in Java) may be “paged”, in order

to keep the system operational while the software is debugged to

identify such objects (Goldstein, Shehory, & Weinsberg, 2007).

https://doi.org/10.1016/j.eswa.2017.11.036

0957-4174/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2017.11.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.11.036&domain=pdf
mailto:jgfaccin@inf.ufrgs.br
mailto:ingridnunes@inf.ufrgs.br
https://doi.org/10.1016/j.eswa.2017.11.036

J. Faccin, I. Nunes / Expert Systems With Applications 95 (2018) 190–200 191

Although promising, all these approaches were individually

analysed and implemented, thus being application-specific solu-

tions. Furthermore, the actions of mitigating effects and search-

ing for causes are all explicitly modelled and hard coded . Existing

solutions can potentially support a more flexible implementation

of these approaches by exploiting the use of autonomous software

components, called agents . However, the reasoning towards the se-

lection of remediation actions, and cause identification and reso-

lution is still manual. The belief-desire-intention (BDI) architecture

(Rao & Georgeff, 1995) is such a solution. This architecture pro-

vides such agents with a reasoning cycle that includes an option

generation function, in which goals to identify and resolve causes

can be generated, and a plan selection function, in which remedi-

ation plans (sequences of actions) can be selected because other

plans may not prioritise the mitigation of effects. However, such

functions are abstract in the BDI architecture, and must be cus-

tomised in specific applications to provide the desired behaviour.

In fact, there are many existing approaches that extend, adapt and

customise the gaps of the BDI architecture (Faccin & Nunes, 2015;

Nunes & Schaeffer-Filho, 2014; Singh, Sardina, Padgham, & Airiau,

2010), but none are able to cope with the aforementioned scenario.

In this paper, we abstract from this described target scenario

and propose a domain-independent extension of the BDI architec-

ture that allows agents to autonomously select appropriate, possi-

bly remediation, plans to solve a problem (i.e. achieve a goal) and

deal with possible problem causes. The goal of our extension is

not to serve as replacement of the traditional BDI architecture in

agent development, but to automate the coordination of an agent’s

actions in our target scenario. This approach thus promotes reuse

across domain-dependent solutions, designed and implemented in

an ad hoc way, and allows agents to flexibly decide the best ac-

tion according to the current context, agent goals and preferences.

Our BDI architecture extension includes a set of components to

capture the required domain knowledge to allow agents to make

such decisions. This knowledge is then used in a customised rea-

soning mechanism, which selects remediation plans, when needed,

and generates goals to search and deal with problem causes. Our

approach is evaluated by taking an existing network resilience sce-

nario (Nunes & Schaeffer-Filho, 2014; Schaeffer-Filho et al., 2012),

which is implemented in an application-specific way, and develop-

ing it with our approach. Results show that our approach is able to

reproduce the behaviour in a domain-independent way. Moreover,

an empirical evaluation shows that the performance is not com-

promised by postponing the practical reasoning process regard-

ing remediation plans to runtime and the developers’ implementa-

tion effort is reduced. Our approach thus promotes software reuse

in an important recurrent scenario, thus freeing developers from

the complex reasoning to deal with critical cause-effect situations.

Moreover, it is a flexible solution that chooses between remedi-

ation and definitive plans, depending on the current preferences

and constraints.

In Section 2 , we describe our problem by presenting an il-

lustrative scenario that is used as a running example. We de-

tail the elements comprising the extended BDI architecture in

Section 3 and describe our customised reasoning mechanism in

Section 4 . Our approach evaluation is presented in Section 5 . Fi-

nally, related work is discussed in Section 6 , and conclusions are

presented in Section 7 .

2. Problem and running example

Before detailing the elements that comprise our meta-model,

we introduce an illustrative example to provide a better under-

standing of the scenario addressed. It is used throughout this paper

as a running example. Despite its simplicity and perhaps not ade-

quacy of an agent-based solution to this problem, it allows us to

clearly illustrate the class of problems we are targeting and con-

cepts of our approach without having to detail additional domain

background. Consider the problem of dealing with a ceiling leak.

Alice is a person who notices a ceiling leak in the room of her

house. To deal with it, she has three options (or plans): (i) cover

the leak with duct tape ; (ii) use a towel to absorb the liquid coming

from the ceiling; or (iii) put a bucket underneath the drip.

The three available plans can achieve the goal of dealing with

the ceiling leak . However, each of them has particular characteris-

tics concerning how this goal is achieved. Each plan requires differ-

ent amounts of time to be performed. Covering the leak with duct

tape, for example, requires much more time than putting a towel

under the drip. Plans are also related to different execution costs .

If Alice chooses to use the towel to achieve the goal, she will have

to afford the cost of such towel (assuming that it would be thrown

away after being used). If she chooses to use the bucket instead,

the cost she has to afford will be lower, given that a bucket can be

reused. Therefore, plan executions are directly associated with the

consumption of resources . Further, considering that the floor can

become wet if the leak is not addressed as soon as possible, Alice

has constraints over the execution time of her plans. In this con-

text, using duct tape to cover the leak may not be a feasible solu-

tion. Moreover, every time Alice wants to deal with a ceiling leak,

she may have different preferences on how to spend resources.

For instance, if she wants to address it quickly, the plan execution

time becomes more valuable than its cost.

Although performing one of the available plans achieves the

given goal, Alice’s problem is not completely solved. The leak is an

effect of several possible causes , e.g. a broken pipe or a cracked

roof tile, which must be addressed in order to stop the leak per-

manently. Moreover, there may be plans that deal with both cause

and effect. However, they possibly cannot be executed in such a

way that constraints are met. Therefore, assuming that an agent A

is in charge of resolving this whole problem, two key issues must

be addressed: (i) how can agent A select the most adequate plan,

possibly a remediation one, to achieve its goal based on its constraints

and current preferences? ; and (ii) how can agent A identify and ad-

dress the causes of the effect associated with this goal to permanently

solve the problem?

In the traditional BDI architecture, an agent is structured in

terms of beliefs, desires and intentions, which are mental attitudes

that represent the information the agent has about the world, the

state of the world it wants to bring about (i.e. its goals), and its

commitment to achieve its desires, respectively. Agents based on

this architecture have their goals explicitly specified, and plans to

reach these goals are provided at design time. However, there is no

specified strategy to choose among available plans. Moreover, de-

pending on how the problem is modelled, plans that deal with the

effect of the problem may not achieve the causes of this problem.

Therefore, once a plan achieves the goal associated with the effect,

its causes may remain unaddressed. Finally, the BDI architecture

does not include means of searching for causes of problems being

tackled.

3. Software agent architecture

The example presented above introduces many key concepts,

such as resources and preferences. Some of these, e.g. goals and

plans, can be associated with existing components of the BDI ar-

chitecture. Others, however, are domain-independent concepts that

can be incorporated to this architecture to provide agents with the

ability of dealing with what we refer to as critical cause-effect situ-

ations . These situations are those in which goals must be achieved

considering a set of constraints and correspond to effect mitigation

before searching and dealing with its cause. Examples are the goals

of dealing with a ceiling leak, potential network attack or problem

Download English Version:

https://daneshyari.com/en/article/6855301

Download Persian Version:

https://daneshyari.com/article/6855301

Daneshyari.com

https://daneshyari.com/en/article/6855301
https://daneshyari.com/article/6855301
https://daneshyari.com

