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a b s t r a c t 

The inherent structure and connectivity of a group are important features of social networks. Finding the 

densest subgraphs of a graph directly maps to revealing the densest communities of a social network. 

Various techniques, e.g., edge density, k -core, near-cliques and k -cliques, have been developed to charac- 

terize graphs and extract the densest subgraphs of the graphs. However, as extraction of subgraphs with 

constraints is NP-hard, these techniques face a major difficulty of processing big and/or streaming data 

sets from social networks. This demands new methods from the expert and intelligent systems perspec- 

tive for computation of the densest subgraph problem (DSP) with big and/or streaming data. The most 

recent method for this purpose is the “Sampling” method. It samples the big data sets, thus reducing the 

data space and consequently speeding up the DSP computation. But the sampled data inevitably miss out 

many useful data items. A new approach is presented in this paper for accelerated DSP computation with 

big and/or steaming data through data space reduction without loss of useful information. It uses a slid- 

ing window of small graphs with a fixed number of edges. Then, it filters out the least connected edges 

for each small graph. While the small graphs are processed, subgraphs are incrementally put together 

to reveal the densest subgraphs. Finally, the data space previously filtered out is checked for recovery 

of globally important edges. The approach is incorporated with existing subgraph extraction techniques 

for scalable and efficient DSP computation with improved accuracy. It is demonstrated for four subgraph 

extraction techniques over four Twitter data sets, and is shown to outperform the “sampling” method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Analysis of social networks is popularly described as graph min- 

ing problems ( Nettleton & Salas, 2016; Park, Hwang, & Lee, 2016 ). 

The Densest Subgraphs Problem (DSP) is a key issue in large- 

scale graph mining ( Tsourakakis, 2015 ). For example, social graphs 

( Wang, Wang, Yu, & Zhang, 2015 ) reveal the friendships among 

people. They are used to forecast planning stock for stakehold- 

ers ( Paletto, Hamunen, & Meo, 2015 ). Social graphs are also ap- 

plied in examination of the popularity of two undergraduate class- 

rooms ( Webster, Gesselman, & Crosier, 2016 ). Other examples in- 

clude those in education ( Carolan, 2013 ) and community detection 

( Atzmueller, Doerfel, & Mitzlaff, 2016 ). 

The DSP has been studied extensively in data mining and 

theoretical computer science. Investigations in data mining in- 
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clude those reported in Tatti and Gionis (2015) , Sozio and 

Gionis (2010) , Balalau, Bonchi, Chan, Gullo, and Sozio (2015) , 

Tsourakakis (2015) and Tsourakakis, Bonchi, Gionis, Gullo, and 

Tsiarli (2013) . Studies in theoretical computer science are found in 

references ( Andersen & Chellapilla, 2009; Bhattacharya, Henzinger, 

Nanongkai, & Tsourakakis, 2015; Khuller & Saha, 2009a ). As various 

features of densest subgraphs have been studied, there are several 

ubiquitous definitions of “density”. These definitions mainly con- 

cern subgraph nodes and their degrees, such as edge density, k - 

core, α − quasi − cliques and k − cliques . They will be discussed 

later in detail in Section 2 . 

Corresponding to these density definitions, algorithms for find- 

ing the densest subgraphs are also developed, which are com- 

plicated in both computational performance and space efficiency. 

They are generally classified into three categories ( Mitzenmacher, 

Pachocki, Peng, Tsourakakis, & Xu, 2015 ): 1) Expert and intelligent 

heuristics without theoretical guarantees ( Balalau et al., 2015 ); 2) 

Brute-forth or exhaustive search techniques that may be applicable 

to small graphs; and 3) Poly-time solvable algorithms with theo- 

retical guarantees ( Mitzenmacher et al., 2015 ). Most of these al- 
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gorithms process the data set as a whole. In a typical comput- 

ing environment, they have the capability of analyzing a graph 

with 3 million edges at a time. However, recent research has in- 

dicated that finding the densest subgraphs without a size limita- 

tion is an NP-Complete problem ( Khuller & Saha, 2009b ) and de- 

tecting communities with certain constrains is an NP-Hard prob- 

lem ( Balalau et al., 2015 ). This implies that the execution time per- 

formance of the algorithms deteriorates exponentially with the in- 

crease of the size of the data set. Obtaining the densest subgraphs 

from a vast volume of data sets within an acceptable period of 

time becomes critical in real-world applications. 

It is even more challenging that social network graphs are not 

static but highly dynamic. Such graphs are formed from streaming 

data, and thus evolve over time. For example, a friendship graph 

from Twitter has more than 2 billion vertices and 65 billion edges. 

It produces approximately 0.1 million creations and deletions of 

edges and nodes per hour. In this case, edge stream arrives per- 

sistently and endlessly over time. Such highly dynamic and large- 

scale streaming data poses new challenges to the problem of find- 

ing the densest subgraphs. This demands effective and efficient 

techniques to handle the vast volume of steaming data. 

As the DSP is an NP problem ( Khuller & Saha, 2009b ), in order 

to improve the computational performance and space efficiency, a 

key idea is to reduce the space over which the search is performed 

for a solution. It is desirable that as much as possible informa- 

tion of the original graph be retained in the reduced space. Oth- 

erwise, the solution obtained from the reduced space may not be 

a good solution. So far, there is a lack of a rigorous theory to guide 

the space reduction for social network graphs. Expert and intel- 

ligent systems have demonstrated great success in dealing with 

large-scale and complicated real-world problems. They have the 

potential to make significant contributions in discovery of inherent 

structure of social networks, decomposition of large-scale prob- 

lems into multiple smaller ones, and particularly acceleration of 

DSP computation of big and streaming data. 

Pre-processing of the graph data set will help reduce the data 

space, thus accelerating the process of finding the densest sub- 

graphs. The “Sampling” method is such a data pre-processing al- 

gorithm ( Mitzenmacher et al., 2015 ). Incorporating with subgraph 

finding algorithms, it gives statistically reasonable and high-quality 

subgraphs in a polynomial time. However, the sampling method 

samples the data set in probability ( Mitzenmacher et al., 2015 ) 

or poses other constraints. It not only accepts less important data 

items but also discards significant data items. Therefore, it has in- 

herent shortcomings. 

To address this problem, an intelligent data space reduction 

approach is presented in this paper from the perspective of ex- 

pert and intelligent systems. It uses a sliding window segmen- 

tation strategy to segment the vast volume of graph data into 

a series of small graphs with a fixed number of edges. Then, it 

eliminates superfluous information of the small graphs by filter- 

ing out the least connected edges. When the small graphs are 

processed, the approach incrementally merges the non-overlapping 

subgraphs to reveal the densest subgraphs. Finally, the data space 

previously filtered out due to their local uselessness is checked for 

recovery of globally useful edges. Incorporating with existing sub- 

graph finding techniques, the approach is expected to behave much 

better than the sampling method in terms of the quality of the 

solution. 

This paper is organized as follows. The notations used through- 

out this paper are listed in Table 1 . Section 2 discusses related 

work and motivations. Section 3 defines densest subgraph problem 

and presents its challenges. This is followed by Section 4 for a data 

space reduction approach for DSP in social graphs. The presented 

approach is demonstrated in Section 6 through experiments over 

four typical data sets. Finally, Section 7 concludes the paper. 

Table 1 

Notations and definitions. 

Notation Descriptions 

c k the number of k − cliques in a graph 

D the diameter of a graph 

d u the degree of node u 

den ( G ) approaches to find densest subgraphs in G , 

including edge density , k − core, α − quasi 

− cliques, and k − cliques 

e, E an edge e and edge set E, e ∈ E 
dict () dictionary in data structure, “key-value” pairs 

|E ( S, S )| | E(S, S) | = | E(S) | , the number of edges in S 

|E ( v, S i )| the number of edges of node v to graph S i 
G ( V, E ) a graph G with vertices set V and edges set E, 

v ∈ V and e ∈ E 
G i induced from graph w i after pruning 

G 
′ 
i 

induced from graph G i and G 
′ 
i −1 

by merging 

G 
′′ 
i 

the densest subgraphs of G 

H () Shannon entry 

i, k indices 

M, S graph 

m, n the numbers of edges and nodes, 

m = | E| = E(G ) , n = | V | 
p p ∈ (0, 1), parameter for Incremental Merging 

Algorithm 

Pro () the probability of outcomes 

P i the priority of edge e i 
Q j pruned _ edges _ queue [ Q j ] = e j , Q j is the “key” in 

“key-value” pairs of dictionary 

sn the number of subgraphs 

t [ G ] the number of triangles in graph G 

v, V node (vertex) v , and set V of nodes, v ∈ V 
w i a window of graph with a fixed number of 

edges, e.g., 10,0 0 0 

α parameter for α − quasi − cliques, α ∈ (0, 1) 

δ δ = E(G ) / 
(| G | 

2 

)
ρ 1 − ρ denotes the density of a graph 

2. Related work and motivations 

The Densest subgraph problem (DSP) is a key primitive in both 

algorithmic graph theory and graph mining. It is used to discover 

the most connected communities in Twitter. It is also used to mine 

co-author relationships in DBLP to find Nucleus hierarchy relation- 

ships in bioinformatics ( Sariyüce, Seshadhri, Pinar, & Çatalyürek, 

2015 ). Co-authors graph in DBLP helps discover close cooperation 

in research. Social graphs ( Wang et al., 2015 ) reveal the friend- 

ships among people. A road map presents the location of large 

cities and towns. Bipartite graphs indicate the purchase behaviours 

of customers, where grouped products can be recommended to 

the customers in the same subgraph. All these problems are the- 

oretically described as finding the densest subgraphs. There have 

been comprehensive surveys ( Harenberg et al., 2014; Lee, Ruan, 

Jin, & Aggarwal, 2010; McGregor, 2014 ) and tutorials ( Gionis & 

Tsourakakis, 2015 ) on discovery of the densest subgraphs. 

It is indicated in the survey ( Lee et al., 2010 ) and tuto- 

rial ( Gionis & Tsourakakis, 2015 ) that there are several ubiqui- 

tous definitions for density. These definitions mainly concern the 

nodes and their degrees. According to the definitions of density, 

there are fowling subgraph finding algorithms: edge density, k −
core ( Bhattacharya et al., 2015 ), α − quasi − cliques, connectivity , 

near − cliques and k − cliques . Table 2 tabulates these definitions 

and descriptions, from which various algorithms have been devel- 

oped for practical DSP computation. 

The above mentioned algorithms have different objectives. The 

edge density algorithm finds the maximum average degree sub- 

graph of a graph. The algorithm for connectivity illustrates how 

a vertex in a subgraph connects to other vertices in the same 

subgraph. The k − core algorithm finds the nodes that have at 

least k connections with other vertices in the same subgraph. In 
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