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a b s t r a c t 

In this paper, we present a new method, called Spectral Global Silhouette method ( GS ), to calculate the 

optimal number of clusters in a dataset using a Spectral Clustering algorithm. It combines both a Silhou- 

ette Validity Index and the concept of Local Scaling. First, the GS algorithm has first been tested using 

synthetic data. Then, it is applied on real data for image segmentation task. In addition, three new meth- 

ods for image segmentation and two new ways to calculate the optimal number of groups in an image 

are proposed. Our experiments have shown a promising performance of the proposed algorithms. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Clustering is an unsupervised learning method that divides data 

into groups (clusters) that are meaningful and/or useful. When the 

objective is to find meaningful groups, then the clusters should 

capture the natural structure of the data ( Everitt, Landau, Leese, 

& Stahl, 2011 ). 

Cluster analysis plays an important role in a wide variety of 

fields (e.g. see Jain, Murty, & Flynn, 1999; Xu & Wunsch, 2005 ): 

social sciences, biology, statistics, pattern recognition, information 

retrieval, machine learning and data mining. 

Several clustering methods with different characteristics have 

been proposed for different purposes. Some well-known clustering 

algorithms are: K means ( MacQueen, 1967 ), EM (Expectation Maxi- 

mization) ( Dempster, Laird, & Rubin, 1977 ), Hierarchical clustering 

algorithms ( HC ) ( Rokach & Maimon, 2005 ) and Spectral clustering 

( SC ) ( Luxburg, 2007; Ng, Jordan, & Weiss, 2001 ). In all of them, the 

estimation of the number of clusters contained in a dataset is an 

essential issue. The user has to define the number of clusters ei- 

ther a priori or a posteriori. 

In practical problems, the number of clusters is generally un- 

known. A simple approach to find the optimal number consists of 

getting a set of data partitions with different numbers of clusters 
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and then to select the partition that provides the best result ac- 

cording to a specific validity index ( VID ). With the help of this VID 

the optimal number of clusters is automatically determined. 

Some of the most well-known VID are the Davies-Bouldin In- 

dex ( Davies & Bouldin, 1979 ), the Calinski-Harabasz Index ( Calinski 

& Harabasz, 1974 ), Dunn’s Index ( Dunn, 1974 ), the Silhouette 

Index ( Rousseeuw, 1987 ), the S_Dbw Validity Index ( Halkidi & 

Vazirgiannis, 2001 ) etc. 

Spectral clustering ( SC ) is one of the most popular clustering 

methods. This method can be applied by using standard linear 

algebra techniques and it usually provides meaningful groups. It 

should be noted that, typically, the number of clusters is set in a 

manual way. However, approaches to automatically determine the 

optimal number of clusters are always preferred. This is one of 

the main objectives of the present article: determining the optimal 

number of clusters using a SC algorithm. 

Ref. ( Zelnik-manor & Perona, 2004 ) proposes a spectral clus- 

tering algorithm that computes automatically the optimal num- 

ber of groups. It can also handle multi-scale data using the con- 

cept of local scaling. To determine the optimal number of groups, 

this algorithm minimizes the cost of aligning a set of eigenvectors 

with a canonical coordinate system (using rotations). Ref. ( Xiang & 

Gong, 2008 ) proposes an alternative method to estimate the num- 

ber of clusters. To this end, the more significant eigenvectors to 

get separated data (using EM algorithm) are selected. Both meth- 

ods are applied to image segmentation. 

Image segmentation is the process of assigning a label to each 

pixel in an image in such a way that pixels with the same label 
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share certain characteristics (ex: colour, intensity, or texture). The 

goal of segmentation is to simplify the representation of an image 

into something that is meaningful and easier to analyse. 

The use of Spectral clustering for image segmentation, is com- 

putationally intensive. This is due to the use of an affinity matrix 

( A ) that contains all the pairwise affinities between pixels. Refer- 

ences ( Fowlkes, Belongie, Chung, & Malik, 2004; Shi & Malik, 1998; 

Tung, Wong, & Clausi, 2010 ) provide different approaches to reduce 

the computational requirements. For instance, ( Shi & Malik, 1998 ) 

uses a sparse version of A in which each element is connected only 

to a few of its nearby neighbours in the image and all other con- 

nections are assumed to be zero. A different approach is used in 

( Fowlkes et al., 2004 ): the pairwise similarities from a small ran- 

dom subset of pixels are used. Last but not least, ( Tung et al., 2010 ) 

combines a blockwise segmentation strategy along with a stochas- 

tic ensemble consensus. 

In the present work, a simple and effective method named 

Spectral Global Silhouette method is shown. GS uses SC together 

with the Silhouette Validity index and the concept of local scaling. 

This combination allows finding the optimal number of clusters in 

a data set as well as an optimal local scaling. 

The application of the SC algorithm to a set of data points pro- 

vides new representations of these data points with the help of 

the largest eigenvectors of a data affinity matrix. The present arti- 

cle works directly on these new representations of data points un- 

like ( Zelnik-manor & Perona, 2004 ) and ( Xiang & Gong, 2008 ) that 

initially work with the eigenvectors either analysing their structure 

or selecting the more relevant. 

For large datasets, the GS algorithm requires high computational 

resources. In this article, the image segmentation problem to illus- 

trate how to apply GS for a large dataset is presented. Two meth- 

ods are shown: WA and WB . Both of them are based on GS and 

are used to calculate the optimal number of groups in an image 

( IM ). The WA algorithm uses a reduced version of IM . The WB al- 

gorithm uses a scalable approach. The proposed methods WA and 

WB are then applied to the image segmentation problem result- 

ing in different algorithms. WA is applied in combination with an 

optimal sparse version of A ( Shi & Malik, 1998 ) ( GSWA method). 

Other simple method for image segmentation ( GSWB ) that uses WB 

is also presented. GSWB is compared and validated by means of the 

Nyström method ( Fowlkes et al., 2004 ). The WB algorithm together 

with the Nyström method form the Nyström_ WB method that is 

also analysed. 

In Section 2 some concepts used in the paper are reviewed. 

In Section 3 , the proposed methods GS, WA, WB, GSWA, GSWB 

and Nyström_ WB are described. In Section 4 these methods are 

tested and validated using synthetic and real data. Finally in 

Sections 5 and 6 , a discussion and conclusions of the paper are 

respectively presented. 

2. Background 

This section reviews some well-known methods used in the 

paper: Hierarchical clustering ( HC ) ( Rokach & Maimon, 2005 ), 

K means clustering ( MacQueen, 1967 ), Spectral Clustering ( SC ), Lo- 

cal Scaling transformation ( Zelnik-manor & Perona, 2004 ) and 

the Silhouette Validity index ( Rousseeuw, 1987 ) (Average Silhou- 

ette index ( AS ) or Simplified Silhouette index ( SS ) ( Hruschka & 

Covões, 2005 ). 

2.1. Hierarchical and k means clustering 

Hierarchical clustering ( HC ) groups data over a variety of scales 

by creating a cluster tree or dendrogram. It follows several steps: 

(1) find the similarity or dissimilarity between every pair of objects 

in the data set (2) grouping the objects into a binary, hierarchical 

cluster tree (linkage) (3) determining where to cut the hierarchical 

tree into clusters. 

In this paper, the HC computes the distance between two data 

points and the distance between two clusters (for the linkage) 

using respectively the Euclidean and the Average distance (this 

means the average of the distances of each element of the clus- 

ter with each element of the other cluster). It is important to note 

that this is the only choice made for the HC algorithm. 

K means clustering is a partitioning method. By dividing data 

into k sub-clusters, K means represents all the data by the mean 

values or centroids of their respective sub-clusters. The selection 

of the initial centres in each sub-cluster is randomly chosen or de- 

rived from some heuristic. The algorithm follows an iterative pro- 

cess where each iteration associates every data point to its near- 

est centroid. This is carried out according to some chosen distance 

metric. The new centroids are calculated by taking the mean of all 

the data points within each sub-cluster. The algorithm iterates un- 

til no data points move from one sub-cluster to another. 

Unlike hierarchical clustering, K means clustering operates on 

actual observations (rather than the larger set of dissimilarity mea- 

sures), and creates a single level of clusters. This distinction means 

that K means clustering is often more suitable than hierarchical 

clustering for large amounts of data. 

The algorithms HC and K means are used in the last step of the 

SC algorithm. 

2.2. Spectral clustering 

The goal of Spectral Clustering is to cluster a set of data points 

x 1 ,…, x n as a graph partitioning problem without making any as- 

sumption on the form of the data clusters. Spectral clustering often 

produces better results than classical clustering algorithms such 

as K means and mixture models. It also allows finding non-convex 

clusters. 

Different stages are involved in the Spectral Clustering algo- 

rithm. (1) A pre-processing step to construct the graph and the 

affinity matrix representing the data set. (2) The calculation of the 

spectral representation. To this end, it forms the associated Lapla- 

cian matrix and computes its eigenvalues and eigenvectors. Then, it 

maps each data point to a lower-dimensional representation based 

on two or more eigenvectors. (3) The clustering process that assign 

points to two or more classes, based on the new representation. 

So, given a set of points x 1 ,…, x n to be partitioned into k clus- 

ters G 1 ,…, G k the spectral clustering can be formulated as follows 

( Luxburg, 2007 ): 

1. Calculate the affinity matrix A defined by (1) 

A ( i, j ) = e 
−d 2 ( x i , x j ) 

2 σ2 f or i � = j 

and A ( i, i ) = 0 (1) 

where d ( x i , x j ) is the distance between x i and x j and σ is a 

scaling parameter. 

2. Construct the normalized Laplacian matrix L sym 

= Q 

−1/2 A 

Q 

−1/2 , where Q is a diagonal matrix whose ( i, i )-element is 

the sum of A ’s i th row. 

3. Find the k largest eigenvectors of L sym 

(eigenvectors 

whose eigenvalues are the largest in magnitude) and form 

the matrix U k by stacking the eigenvectors in columns: 

U k = [ u 1 ⁞ …⁞ u k ] ε R n ×k . 

4. Form the matrix Y k from U k by normalizing the rows of U k 

to have unit length. 

5. Treat each row of Y k as a point in R k and cluster them into 

k groups C 1 ,…, C k via K means (or HC ). 

6. Assign the original points x i to cluster G j if and only if row i 

of the matrix Y k was assigned to cluster C j . 
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