
Expert Systems With Applications 61 (2016) 378–385 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Linkage artificial bee colony for solving linkage problems 

Phuc Nguyen Hong, Chang Wook Ahn 

∗

Department of Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea 

a r t i c l e i n f o 

Article history: 

Received 17 February 2016 

Revised 5 May 2016 

Accepted 30 May 2016 

Available online 2 June 2016 

Keywords: 

Artificial bee colony 

Meta-heuristics 

Order statistics 

a b s t r a c t 

Nature-inspired meta-heuristics have gained popularity for the solution of many real world complex 

problems, and the artificial bee colony algorithm is one of the most powerful optimisation methods 

among the meta-heuristics. However, a major drawback prevents the artificial bee colony algorithm from 

accurately and efficiently finding final solutions for complex problems, whose variables interact with each 

other. We propose a novel optimization method based on the artificial bee colony algorithm and statistics. 

The proposed optimization method is evaluated for Pott models and optimization linkage functions, and 

the proposed method is verified to outperform traditional artificial bee colony and other meta-heuristics 

for those cases. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction and related work 

Meta-heuristic optimization has gained significant popularity 

for solving complex problems that are challenging to solve us- 

ing derivative-based techniques. Several nature-inspired meta- 

heuristic optimization algorithms have been developed. These al- 

gorithms are also referred to as population-based meta-heuristics 

or general-purpose algorithms since they can be applied to a 

wide range of problems. Some popular population-based meta- 

heuristics are the genetic algorithm (GA) ( Holland, 1975 ), differ- 

ential evolution (DE) ( Storn & Price, 1997 ), artificial bee colony 

(ABC) ( Karaboga & Basturk, 2007b ), and clonal selection algorithm 

(CSA)( Leandro & Von Zuben, 2002 ). 

Since ABC was introduced ( Akay & Karaboga, 2009; Karaboga & 

Basturk, 2007a, 2007b ), it has been used to address several prob- 

lems in different fields ( Akay, 2013; Apalak, Karaboga, & Akay, 

2014 ). A comprehensive survey of ABC applications and its im- 

proved versions is presented in ( Tsai, Pan, Liao, & Chu, 2009 ). ABC 

has also been implemented in parallel processing in order to im- 

prove its performance ( Narasimhan, 2009; Subotic, Tuba, Chen, & 

Stanarevic, 2011; Subotic, Tuba, & Stanarevic, 2010; Zou, Zhu, Chen, 

& Sui, 2010 ). The improved ABC versions often increase computa- 

tion costs and are more complicated than the conventional ABC 

algorithm ( Cavdar, Mohammad, & Alavi, 2013 ). 

However, ABC fails to address the linkage problem where vari- 

ables are dependent and interactive. The ABC algorithm and its 

variants assume problem variables are independent, and the op- 

timal solution can be obtained by manipulating one variable at 
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a time. This paper presents a novel category of the ABC method, 

linkage-aware artificial bee colony (LABC) that can overcome this 

obstacle. LABC exploits statistics measures for the current popula- 

tion to estimate variable dependency, and can detect a group of de- 

pendent variables and manipulate them simultaneously. The pro- 

posed method is experimentally evaluated for Pott models and the 

bit trap functions ( Ackley, 1987 ). 

Linkage problems have been actively solved for GAs ( Hauschild 

& Pelikan, 2011 ), and can be classified according to the number 

of interactive variables. We introduce pairwise linkage problems 

for ABC algorithms, and propose a novel statistics-based method 

to measure the relationship between two variables. 

We use the Pott model to evaluate LABC. There are pairwise 

interactions between variables in the Pott model, and it can model 

many problems in computer vision, such as segmentation, stereo 

matching, restoration, and optical flow. 

The contributions of this paper are three-fold. 

• We introduce a novel LABC that can resolve the linkage prob- 

lems 
• We propose a novel statistics measure to compute the depen- 

dency of variables 
• We evaluate LABC for the Pott model and linkage functions. 

The qualitative and quantitative experimental results show that 

LABC is a promising optimization algorithm, and the proposed 

reduced energy function can be used as a real application for 

meta-heuristic algorithms 

The order Statistics Coefficient (OSC) and Robust Order Statistics 

Coefficient (ROSC) are presented in Section 2 . ABC and LABC are 

presented and discussed in Section 3 , and experimental results are 

reported in Section 4 . Conclusions are presented in Section 5 . 
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Fig. 1. Order statistics coefficients for two sets of data points. 

2. Statistics measures for variable dependency 

2.1. Order statistics coefficient 

OSC ( Xu, Chang, Hung, Kwan, & Fung, 2007 ) can measure the 

monotonically non-linear association of two sets of data points us- 

ing order statistics and the rearrangement inequality. OSC sets of 

data points are highly correlated if large or small values of a given 

set occur in conjunction with large or small values of another. The 

sets are uncorrelated if large or small values of one set are associ- 

ated with small or large values, respectively, of another. 

Consider two time series X = { x 1 , x 2 , ..., x m 

} and Y = 

{ y 1 , y 2 , ..., y m 

} , of length m . The time series pairwise results 

are the set L = { ( x 1 , y 1 ) , ..., ( x m 

, y m 

) } . Rearranging L according 

to the values of x i , we obtain L 1 = { (x (1) , y [1] 

)
, ..., 

(
x (m ) , y [ m ] 

)} , 
where ( x (1) ≤ ... ≤ x ( m ) ) are the order statistics of X , and y [1] , 

..., y [ m ] are the associated concomitants ( David & Nagaraja, 

2003 ). Rearranging L according to the values of y i , we obtain 

L 2 = { (x [1] , y (1) 

)
, ..., 

(
x [ m ] , y (m ) 

)} , where y (1) ≤ ... ≤ y ( m ) . The OSC 

is 

r ( X , Y ) 
�= 

∑ m 

i =1 (x (i ) − x (m −i +1) ) y [ i ] ∑ m 

i =1 (x (i ) − x (m −i +1) ) y (i ) 

, (1) 

where r ( X , Y ) is in the interval [ −1 , 1 ] , and larger values indicate 

higher correlation between X and Y . Fig. 1 shows an illustration of 

OSC distance for two sets of data points. 

2.2. Motivation to improve order statistics coefficients 

OSC is highly sensitive to changes in association, tolerates 

monotone nonlinear transformations, and is robust to noise ( Xu 

et al., 2007 ). This makes OSC suitable to use as a metric for mea- 

suring image similarity. Given two series of data points of the same 

size, set Z can be constructed from the two series and OSC can be 

computed using Z to measure the degree of correlation between 

the data series. However, a problem limiting OSC usage is that the 

OSC is undefined for a data series that includes equal values. 

2.3. ROSC 

The concept of an ROSC is to monotonically increase the value 

of each element in ordered sets Z 1 and Z 2 by its rank in Z 1 

and Z 2 . Similar to OSC, an ROSC forms the two time series pair- 

wise first, resulting in a set, Z = { z 1 , z 2 , ..., z m 

} , and rearranges Z 

according to the values of x i and y i to result in new ordered 

sets, Z 1 = { (x 1 1 , y 
2 
1 

)
, ..., 

(
x 1 m 

, y 2 m 

)} and Z 2 = { (x 2 1 , y 
1 
1 

)
, ..., 

(
x 2 m 

, y 1 m 

)} , 
respectively. Increasing the value of each element in Z 1 and 

Z 2 , we obtain new sets Z 

′ 
1 = 

{(
x 1 

′ 
1 

, y 2 
′ 

1 

)
, ..., 

(
x 1 

′ 
m 

, y 2 
′ 

m 

)}
and Z 

′ 
2 = {(

x 2 
′ 

1 , y 
1 ′ 
1 

)
, ..., 

(
x 2 

′ 
m 

, y 1 
′ 

m 

)}
, where x 1 

′ 
i 

= x 1 
i 
λ
(
x 1 

i 

)
; y 2 

′ 
i 

= y 2 
i 
λ
(
y 2 

i 

)
; y 1 

′ 
i 

= 

y 1 
i 
λ
(
y 1 

i 

)
. λ

(
x 1 

i 

)
is the rank of element x 1 

i 
in Z 1 ; and λ

(
y 1 

i 

)
and 

λ
(
y 2 

i 

)
are the ranks of elements y 1 

i 
and y 2 

i 
in Z 2 , respectively. An 

ROSC is defined as 

ROSC( X , Y ) = 

∑ m 

i =1 

(
x 1 

′ 
i 

− x 1 
′ 

m −i +1 

)
y 2 

′ 
i ∑ m 

i =1 

(
x 1 

′ 
i 

− x 1 
′ 

m −i +1 

)
y 1 

′ 
i 

(2) 

where exploiting the sorted sets, Z 1 and Z 2 , the ranks of x 1 
i 

and y 1 
i 

can be computed as λ
(
x 1 

i 

)
= i and λ

(
y 1 

i 

)
= i . 

An ROSC has several important properties as follows. 

2.3.1. Property 1 

An ROSC is within the interval [ −1 , 1 ] . 

Proof. Following ( David & Nagaraja, 2003 ), rearrange as 

m ∑ 

i =1 

x 1 
′ 

m −i +1 y 
1 ′ 
i ≤

m ∑ 

i =1 

x 1 
′ 

i y 2 
′ 

i ≤
m ∑ 

i =1 

x 1 
′ 

i y 1 
′ 

i (3) 

and 

m ∑ 

i =1 

x 1 
′ 

m −i +1 y 
1 ′ 
i ≤

m ∑ 

i =1 

x 1 
′ 

m −i +1 y 
2 ′ 
i ≤

m ∑ 

i =1 

x 1 
′ 

i y 1 
′ 

i . (4) 

Then subtracting (3) by (4) and dividing by 
m ∑ 

i =1 

(
x 1 

′ 
i 

− x 1 
′ 

m −i +1 

)
y 1 

′ 
i 

, 

we have −1 ≤ ROSC(X,Y ) ≤ 1, which completes the proof. �

2.3.2. Property 2 

ROSC( X , Y ) = −1(+1) when X and Y have a monotonic decreas- 

ing (increasing) relationship. 

Proof. Assume y i = ϕ ( x i ) , then if ϕ( ·) is a decreasing function, 

y 2 
′ 

i 
= y 1 

′ 
m −i +1 

for all i . Substituting into (2), ROSC( X , Y ) = −1 . Sim- 

ilarly, if ϕ( ·) is an increasing function, y 2 
′ 

i 
= y 1 

′ 
i 

for all i and 

ROSC( X , Y ) = 1 . �

3. Artifical bee colony and linkage artificial bee colony 

3.1. Artifical bee colony 

The ABC algorithm ( Karaboga & Basturk, 2007b ) mimics the for- 

aging behavior of real honeybees and includes three groups: em- 

ployed, onlooker, and scout bees. Employed bees have associations 

with specific food sources (solutions); onlooker bees within the 

hive watch the dances of employed bees to select food sources; 

and scout bees search for food sources randomly. 

The general procedure of the original ABC algorithm consists of 

four steps. In each iteration, employed, onlooker, and scout bees 

phases are performed in an ordered manner and the iteration re- 

peats until the termination criteria are met. 

3.1.1. Initialization 

The algorithm generates an initial population randomly accord- 

ing to a uniform distribution within a feasible space, the control 

parameters are set and the population of food sources is initialized 

by scout bees using 

P i, j = lb j + rand(0 , 1) × (ub j − lb j ) , (5) 

where i indicates the i th candidate solution index in the popu- 

lation P , j indicates the j th variable index of a solution, P i, j is 

maintained by the lower bound lb j and the upper bound ub j , and 

rand (0, 1) generates a number between 0 and 1 with a uniform 

distribution. 

3.1.2. Employed bees 

The employed bees search for solutions neighboring the candi- 

date solution, P i , in their memory to find solutions that have better 

fitness. A candidate neighboring solution, s , is created by stochas- 

tically changing a randomly selected variable j of P i 

s j = P i, j + rand(−1 , 1) × ( P i, j − P l, j ) (6) 
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